Сила через радиус вектор

Лекция №5. ДИНАМИКА АБСОЛЮТНО ТВЕРДОГО ТЕЛА
Содержание
  1. 4.1. Динамика поступательного движения твердого тела.
  2. 4.2. Момент импульса. Момент силы.
  3. 4.3. Основное уравнение динамики вращательного движения относительно точки.
  4. 4.4. Закон сохранения момента импульса.
  5. 4.5. Момент инерции.
  6. 4.6. Теорема Штейнера. Правило аддитивности
  7. Вектор скорости и ускорения материальной точки и их модули. Пример решения задач.
  8. Траектория движения материальной точки через радиус-вектор
  9. Вектор скорости материальной точки
  10. Пример нахождения вектора скорости
  11. Как найти вектор ускорения материальной точки
  12. Модуль вектора скорости точки
  13. Модуль вектора ускорения
  14. Еще примеры решений задачи нахождения вектора скорости и ускорения
  15. Глава 10. Вращаем объекты: момент силы
  16. Переходим от прямолинейного движения к вращательному
  17. Разбираемся с параметрами вращательного движения
  18. Вычисляем линейную скорость вращательного движения
  19. Вычисляем тангенциальное ускорение
  20. Вычисляем центростремительное ускорение
  21. Используем векторы для изучения вращательного движения
  22. Определяем направление угловой скорости
  23. Определяем направление углового ускорения
  24. Поднимаем грузы: момент силы
  25. Знакомимся с формулой момента силы
  26. Разбираемся с направлением приложенной силы и плечом силы
  27. Размышляем над тем, как создается момент силы
  28. Определяем направление момента силы
  29. Уравновешиваем моменты сил
  30. Простой пример: вешаем рекламный плакат
  31. Более сложный пример: учитываем силу трения при расчете равновесия
  32. 💡 Видео

4.1. Динамика поступательного движения твердого тела.

Движение любого твердого тела можно рассматривать как сумму поступательного движения его центра масс и вращательного движения относительно оси, проходящей через его центр масс.

Разобьем твердое тело на элементарные массы mi , тогда его можно представить как систему материальных точек, взаимное расположение которых остается неизменным. Поэтому для описания поступательного движения тела можно использовать закон изменения импульса механической системы

Сила через радиус вектор

p = $$<sum_^n>$$ mi υ i=m υ C — импульс всех материальных точек твердого тела.

Также можно воспользоваться понятием центра масс и к поступательному движению твердого тела применить закон движения центра масс

Сила через радиус вектор

Центр масс твердого тела движется как материальная точка, в которой сосредоточена масса тела, и на которую действуют все силы, приложенные к телу. Уравнение (4.1.2) дает возможность установить закон движение центра масс твердого тела, если известна масса тела и действующие на него силы. Если тело движется только поступательно, то это уравнение будет определять не только закон движения центра масс, но и любой другой точки тела.

4.2. Момент импульса. Момент силы.

Момент силы. Векторная величина, равная векторному произведению радиус-вектора r точки, проведенному из полюса в точку приложения силы, на силу F называется моментом силы материальнойточки относительно некоторого центра

Сила через радиус вектор

Сила через радиус вектор

Пусть на частицу массой m действует сила F , а ее положение в некоторой инерциальной системе отсчета характеризуется радиус-вектором r относительно начала координат. Тогда момент силы частицы относительно точки O дается уравнением (4.2.1). Направление момента силы M совпадает с направлением поступательного движения правого винта при его вращении от радиус-вектора r к силе F , и он перпендикулярен как вектору r , так и вектору F (рис. 4.2.1). Тогда модуль вектора момента силы равен

Сила через радиус вектор

где d=r sin α − плечо силы относительно точки O .

Плечо силы − это расстояние, измеряемое по перпендикуляру от оси вращения до линии, вдоль которой действует сила.

Таким образом, модуль момента силы относительно оси, есть скалярная величина, характеризующая вращательное движение действия силы и равная произведению модуля силы F , действующей на твердое тело, на плечо силы d относительно этой оси.

Если на тело действует несколько сил, то суммарный момент этих сил равен векторной сумме моментов всех сил относительно данной оси:

Сила через радиус вектор

Момент импульса. Векторная величина, равная векторному произведению радиус-вектора r точки, проведенного из центра на ее импульс m υ называется моментом импульса материальной точки относительно некоторого центра

Сила через радиус вектор

Сила через радиус вектор

Пусть частица массой m имеет импульс p , а ее положение в некоторой инерциальной системе отсчета характеризуется радиус-вектором r относительно начала координат. Тогда момент импульса частицы относительно точки O дается уравнением (4.2.4). Направление момента импульса совпадает с направлением поступательного движения правого винта при его вращении от радиус-вектора к импульсу p , и он перпендикулярен как вектору r , так и вектору p (рис. 4.2.2). Тогда модуль вектора момента импульса равен

Сила через радиус вектор

где d − плечо импульса относительно точки O .

Плечо импульса − это расстояние, измеряемое по перпендикуляру от оси вращения до линии, вдоль которой направлен импульс.

Таким образом, модуль вектора момента импульса относительно центра или оси − есть скалярная величина, равная произведению импульса p на плечо импульса d относительно этой оси.

Моментом импульса механической системы относительно некоторого центра называется векторная величина, равная геометрической сумме моментов импульса относительно той же точки всех материальных точек системы

Сила через радиус вектор

4.3. Основное уравнение динамики вращательного движения относительно точки.

Рассмотрим систему материальных точек массами m1, m2, . mn движущихся со скоростями υ 1, υ 2, . υ n . Пусть на каждую из этих точек действуют: равнодействующие внутренних сил F i 1, F i 2, . F i n , и равнодействующие внешних сил F e 1, F e 2, . F e n .

Запишем уравнения движения частиц:

Сила через радиус вектор

Умножим каждое уравнение системы (4.3.3) на соответствующий радиус-вектор и получим

Сила через радиус вектор

Сила через радиус вектор

Преобразуем данные уравнения

Сила через радиус вектор

Сложим эти уравнения и получим

Сила через радиус вектор

В последнем уравнении:

Таким образом, выражение (4.3.6) можно записать в виде

Сила через радиус вектор

Учитывая, что моменты внутренних сил попарно уравновешивают друг друга, и сумма моментов всех внутренних сил для любой системы всегда равна нулю, т. е. $$<sum_^n>$$ M i i=0 , получим основное уравнение динамики вращательного движения относительно точки (или иначе закон изменения момента импульса механической системы ).

Сила через радиус вектор

4.4. Закон сохранения момента импульса.

Если момент внешних сил $$<sum_^n>$$ M e i=0 , то получим

Сила через радиус вектор

закон сохранения момента импульса.

Если момент внешних сил действующих на механическую систему относительно центра оси равен нулю, то момент импульса системы относительно этого центра с течением времени не изменяется.

Можно сказать, что момент силы при вращательном движении является аналогом силы при поступательном движении, момент импульса − аналогом импульса.

Законы изменения и сохранения момента импульса механической системы можно применить и к вращательному движению твердого тела.

4.5. Момент инерции.

Моментом инерции твердого тела относительно данной оси называется физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг этой оси и равная сумме произведений масс всех частиц тела на квадраты их расстояний от той же оси:

Сила через радиус вектор

Момент инерции зависит только от формы тела и расположения масс относительно оси. [I]=1 кг · м 2 .

Понятие момента инерции было введено при рассмотрении вращения твердого тела. Однако следует иметь в виду, что каждое тело, независимо от того, вращается оно или покоится, обладает определенным моментом инерции относительно любой оси.

Если тело сплошное, то суммирование в выражении (4.5.1) следует заменить на интегрирование:

Сила через радиус вектор

где R − расстояние от элементарной массы dm до оси вращения.

4.6. Теорема Штейнера. Правило аддитивности

Существуют два свойства момента инерции:

1) Теорема Штейнера: момент инерции тела Iz относительно произвольной оси равен сумме момента инерции Ic относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния a между осями:

Сила через радиус вектор

2) Правило аддитивности: сумма моментов инерции частей системы относительно оси равен моменту инерции системы относительно данной оси:

Видео:Радиус векторСкачать

Радиус вектор

Вектор скорости и ускорения материальной точки и их модули. Пример решения задач.

В очередной раз меня попросили решить пару задачек по физике, и я вдруг обнаружил, что не могу решить их с ходу. Немного погуглив, я обнаружил, что сайты в топе выдачи содержат сканы одного и того же учебника и не описывают конкретных примеров решений задачи о том, как найти вектор скорости и ускорения материальной точки. По-этому я решил поделиться с миром примером своего решения.

Видео:Лекция 4.1 | Радиус-вектор, скорость и ускорение | Александр Чирцов | ЛекториумСкачать

Лекция 4.1 | Радиус-вектор, скорость и ускорение | Александр Чирцов | Лекториум

Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора – вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Сила через радиус вектор

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами – единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Сила через радиус вектор

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? “Наверное какой-то жуткий”, подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

Сила через радиус вектор

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:

Сила через радиус вектор

В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Видео:10 Класс - Физика - Перемещение. Радиус-вектор.Скачать

10 Класс - Физика - Перемещение. Радиус-вектор.

Вектор скорости материальной точки

Сила через радиус вектор

Всем известно, что скорость материальной точки – это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.

Пример нахождения вектора скорости

Имеем закон перемещения материальной точки:

Сила через радиус вектор

Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам таблица производных различных функций. В итоге вектор скорости будет иметь следующий вид:

Сила через радиус вектор

Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.

Видео:Определение параметров движения по заданному радиус-вектору. Векторный способ задания движения.Скачать

Определение параметров движения по заданному радиус-вектору. Векторный способ задания движения.

Как найти вектор ускорения материальной точки

Сила через радиус вектор

Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:

Сила через радиус вектор

Видео:2.4. Радиус-вектор и вектор перемещенияСкачать

2.4. Радиус-вектор и вектор перемещения

Модуль вектора скорости точки

Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора – это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:

Сила через радиус вектор

Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.

Видео:Радиус-векторыСкачать

Радиус-векторы

Модуль вектора ускорения

Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:

Сила через радиус вектор

Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.

Видео:ЕГЭ по Физике 2022. Кинематика. Радиус-векторСкачать

ЕГЭ по Физике 2022. Кинематика. Радиус-вектор

Еще примеры решений задачи нахождения вектора скорости и ускорения

А вот тут вы можете найти примеры решения и других задач по физике на тему “механика твердых тел”. А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.

Сила через радиус вектор

Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.

Видео:10 Класс - Физика - Перемещение. Радиус-вектор.Скачать

10 Класс - Физика - Перемещение. Радиус-вектор.

Глава 10. Вращаем объекты: момент силы

Сила через радиус вектор

  • Переходим от поступательного движения к вращательному движению
  • Вычисляем тангенциальную скорость и тангенциальное ускорение
  • Выясняем связь между угловым ускорением и угловой скоростью
  • Разбираемся с моментом силы
  • Поддерживаем вращательное движение

Эта и следующая главы посвящены вращательному движению объектов самой разной природы: от космических станций до пращи. Именно такое движение стало причиной того, что наша планета имеет круглую форму. Если вам известны основные свойства прямолинейного движения и законы Ньютона (они подробно описываются в двух первых частях этой книги), то вы сможете быстро овладеть основами вращательного движения. Даже если вы позабыли некоторые сведения из прежних глав, не беда, ведь к ним всегда можно вернуться в случае необходимости. В этой главе представлены основные понятия вращательного движения: угловая скорость угловое ускорение, тангенциальное ускорение, момент силы и т.п. Однако довольно слов, приступим к делу!

Видео:Построение проекции вектора на осьСкачать

Построение проекции вектора на ось

Переходим от прямолинейного движения к вращательному

Для такого перехода нужно изменить уравнения, которые использовались ранее для описания прямолинейного движения. В главе 7 уже упоминались некоторые эквиваленты (или аналоги) из мира прямолинейного и вращательного движения.

Вот как выглядят основные формулы прямолинейного движения, которые подробно описываются в главе 3:

  • ​ ( v=Delta/Delta ) ​, где ​ ( v ) ​ — это скорость, ​ ( Delta ) ​ — перемещение, a ( Delta ) — время перемещения;
  • ( a=Delta/Delta ) , где ( a ) — это ускорение, ( Delta ) — изменение скорости, a ( Delta ) — время изменения скорости;
  • ​ ( Delta=v_0(t_1-t_0)+^1!/!_2a(t_1-t_0)^2 ) ​, где ​ ( v_0 ) ​ — это начальная скорость, ​ ( t_0 ) ​ — это начальный момент времени, a ​ ( t_1 ) ​ — это конечный момент времени;
  • ​ ( v^2_1-v^2_0=2aDelta ) ​, где ​ ( v_1 ) ​ — это конечная скорость.

По аналогии можно легко вывести основные формулы вращательного движения:

  • ​ ( omega=Delta/Delta ) ​, где ​ ( omega ) ​ — угловая скорость, ​ ( Delta ) ​ — угол поворота, ( Delta ) — время поворота на угол ( Delta ) ;
  • ​ ( alpha=Delta/Delta ) ​, где ​ ( alpha ) ​ — угловое ускорение, ​ ( Delta ) ​ — изменение угловой скорости, ​ ( Delta ) ​ — время изменения угловой скорости;
  • ​ ( theta=omega_0(t_1-t_0)+^1!/!_2a(t_1-t_0)^2 ) ​, где ​ ( omega_0 ) ​ — это начальная скорость;
  • ​ ( omega^2_1-w^2_0=2as ) ​, где ​ ( omega_1 ) ​ — это конечная скорость.

Видео:Модель материальной точки. Радиус вектор | ФизикаСкачать

Модель материальной точки. Радиус вектор  | Физика

Разбираемся с параметрами вращательного движения

В физике движение принято разделять на поступательное и вращательное. При поступательном движении любая прямая, связанная с движущимся объектом, остается параллельной самой себе. При вращательном движении все точки тела движутся по окружностям. Тангенциальным движением называется часть вращательного движения, происходящего по касательной к окружности вращения, а радиальным (или нормальным) движением — часть вращательного движения, происходящего перпендикулярно (по нормали) к касательной, т.е. вдоль радиуса окружности.

Параметры прямолинейного поступательного и вращательного движений можно связать следующими формулами:

Сила через радиус вектор

Допустим, колеса мотоцикла вращаются с угловой скоростью ​ ( omega ) ​, равной 21,5 ( 21,5pi ) ​ радиан в секунду. С какой скоростью едет мотоцикл? Чтобы дать ответ на этот вопрос, достаточно воспользоваться простой формулой связи линейной и угловой скорости.

Вычисляем линейную скорость вращательного движения

Скорость тангенциального движения материальной точки принято называть линейной скоростью вращательного движения. На рис. 10.1 приведен пример вращения мячика для игры в гольф по окружности с радиусом ​ ( mathbf ) ​ и линейной скоростью ( mathbf ) . Скорость ( mathbf ) является векторной величиной, т.е. обладает величиной и направлением (подробнее о векторах рассказывается в главе 4), перпендикулярным радиус-вектору ( mathbf ) .

Сила через радиус вектор

Угловая скорость связана с линейной скоростью соотношением ​ ( v=romega ) ​, которое легко интуитивно понять. При одинаковой угловой скорости, чем дальше материальная точка от центра окружности вращения, тем больше ее линейная скорость.

Попробуем получить уже упомянутую выше формулу связи линейной и угловой скорости ( v=romega ) . Длина окружности ​ ( L ) ​ радиуса ​ ( r ) ​ выражается известной формулой ​ ( L=2pi r ) ​, а полный угол, который охватывает окружность, равен ​ ( 2pi ) ​ радиан. Соответственно, длина дуги окружности длиной ​ ( Delta s ) ​, охватывающая угол ​ ( Deltatheta ) ​, равна:

Сила через радиус вектор

Из формулы прямолинейного движения

Сила через радиус вектор

путем подстановки выражения для ​ ( Delta s ) ​ получим:

Сила через радиус вектор

Сила через радиус вектор

где ​ ( omega ) ​ — угловая скорость, ​ ( Delta ) ​— угол поворота, ​ ( Delta ) ​ — время поворота на угол ( Delta ) , то:

Сила через радиус вектор

Теперь можно легко и просто дать ответ на вопрос, поставленный в конце предыдущего раздела, т.е. определить скорость мотоцикла по угловой скорости вращения его колес. Итак, колеса мотоцикла вращаются с угловой скоростью ( omega ) , равной 21,5​ ( pi ) радиан в секунду. Пусть радиус колеса ​ ( r ) ​ равен 40 см, тогда достаточно использовать следующую формулу:

Сила через радиус вектор

Подставляя в нее значения, получим:

Сила через радиус вектор

Итак, скорость мотоцикла равна 27 м/с или 97 км/ч.

Вычисляем тангенциальное ускорение

Тангенциальным ускорением называется скорость изменения величины линейной скорости вращательного движения. Эта характеристика вращательного движения очень похожа на линейное ускорение прямолинейного движения (см. главу 3). Например, точки на колесе мотоцикла в момент старта имеют нулевую линейную скорость, а спустя некоторое время после разгона ускоряются до некоторой ненулевой линейной скорости. Как определить это тангенциальное ускорение точки колеса? Переформулируем вопрос: как связать линейное ускорение

Сила через радиус вектор

где ​ ( a ) ​ — это ускорение, ​ ( Delta v ) ​ — изменение скорости, a ​ ( Delta t ) ​ — время изменения скорости, с угловым ускорением

Сила через радиус вектор

где ( Deltaomega ) — изменение угловой скорости, ( Delta t ) — время изменения угловой скорости?

Как мы уже знаем, линейная и угловая скорости связаны равенством

Сила через радиус вектор

Подставим это выражение в предыдущую формулу линейного ускорения:

Сила через радиус вектор

Поскольку радиус остается постоянным, то его можно вынести за скобки:

Сила через радиус вектор

Поскольку угловое ускорение ​ ( alpha=Deltaomega/Delta t ) ​, то:

Сила через радиус вектор

Итак, получаем следующую формулу связи между линейным и угловым ускорением:

Сила через радиус вектор

Иначе говоря, тангенциальное ускорение равно произведению радиуса на угловое ускорение.

Вычисляем центростремительное ускорение

Центростремительнным ускорением называется ускорение, необходимое для удержания объекта на круговой орбите вращательного движения. Как связаны угловая скорость и центростремительное ускорение? Формула для центростремительного ускорения уже приводилась ранее (см. главу 7):

Сила через радиус вектор

Теперь, используя известную формулу связи линейной и угловой скорости ​ ( v=romega ) ​, получим:

Сила через радиус вектор

По этой формуле можно определить величину центростремительного ускорения по известной угловой скорости и радиусу. Например, для вычисления центростремительного ускорения Луны, вращающейся вокруг Земли, удобно использовать именно эту формулу.

Луна делает полный оборот вокруг Земли за 28 дней, т.е. за 28 дней Луна проходит ​ ( 2pi ) ​ радиан. Отсюда получаем угловую скорость Луны:

Сила через радиус вектор

Чтобы получить значение угловой скорости в привычных единицах, следует преобразовать дни в секунды:

Сила через радиус вектор

После подстановки этого значения в предыдущую формулу получим:

Сила через радиус вектор

Средний радиус орбиты Луны равен 3,85·10 8 м. Подставляя эти значения угловой скорости и радиуса в формулу центростремительного ускорения, получим:

Сила через радиус вектор

Зная это ускорение и массу Луны, которая равна 7,35·10 22 кг, можно определить центростремительную силу, необходимую для удержания Луны на ее орбите:

Сила через радиус вектор

Видео:Перемещение как изменение радиус-вектораСкачать

Перемещение как изменение радиус-вектора

Используем векторы для изучения вращательного движения

В предыдущих разделах этой главы угловая скорость и угловое ускорение рассматривались как скаляры, т.е. как параметры, характеризующиеся только величиной. Однако эти параметры вращательного движения, на самом деле, являются векторами, т.е. они обладают величиной и направлением (см. главу 4). В этом разделе рассматривается величина и направление некоторых параметров вращательного движения.

Определяем направление угловой скорости

Как нам уже известно, вращающееся колесо мотоцикла имеет не только угловую скорость, но и угловое ускорение. Что можно сказать о направлении вектора угловой скорости? Оно не совпадает с направлением линейной тангенциальной скорости, а… перпендикулярно плоскости колеса!

Эта новость всегда приводит к некоторому замешательству среди новичков: угловая скорость ​ ( omega ) ​, оказывается, направлена вдоль оси вращающегося колеса (рис. 10.2). Во вращающемся колесе единственной неподвижной точкой является его центр. Поэтому начало вектора угловой скорости принято располагать в центре окружности вращения.

Для определения направления вектора угловой скорости ( omega ) часто используют правило правой руки. Если охватить ладонью ось вращения, а пальцы свернуть так, чтобы они указывали на направление тангенциальной скорости, то вытянутый большой палец укажет направление вектора угловой скорости ( omega ) .

Сила через радиус вектор

Теперь угловую скорость можно использовать так же, как и остальные векторные характеристики движения. Направление вектора угловой скорости можно найти по правилу правой руки, а величину — по приведенной ранее формуле. То, что вектор угловой скорости направлен перпендикулярно плоскости вращательного движения, часто вызывает некоторые трудности у начинающих, но к этому можно быстро привыкнуть.

Определяем направление углового ускорения

Если вектор угловой скорости направлен перпендикулярно плоскости вращательного движения, то куда направлен вектор углового ускорения в случае замедления или ускорения вращения объекта? Как известно (см. предыдущие разделы), угловое ускорение определяется формулой:

Сила через радиус вектор

где ​ ( alpha ) ​ — угловое ускорение, ​ ( Deltaomega ) ​ — изменение угловой скорости, ​ ( Delta t ) ​— время изменения угловой скорости.

В векторной форме оно имеет следующий вид:

Сила через радиус вектор

где ​ ( mathbf ) ​ — вектор углового ускорения, а ​ ( Deltamathbf ) ​ — изменение вектора угловой скорости. Отсюда ясно, что направление вектора углового ускорения совпадает с направлением изменения вектора угловой скорости.

Если вектор угловой скорости меняется только по величине, то направление вектора углового ускорения параллельно направлению вектора угловой скорости. Если величина угловой скорости растет, то направление вектора углового ускорения совпадает с направлением вектора угловой скорости, как показано на рис. 10.3.

А если величина угловой скорости падает, то направление вектора углового ускорения противоположно направлению вектора угловой скорости, как показано на рис. 10.4.

Сила через радиус вектор

Видео:1.1. Радиус-вектор. ЕГЭ по физике.Скачать

1.1. Радиус-вектор. ЕГЭ по физике.

Поднимаем грузы: момент силы

В физике большое значение имеет не только время, но и место приложения силы. Всем когда-либо приходилось пользоваться рычагом для перемещения тяжелых грузов. Чем длиннее рычаг, тем легче сдвинуть груз. На языке физики применение силы с помощью рычага характеризуется понятием момент силы.

Приложение момента силы неразрывно связано с вращательным движением объектов. Если приложить силу к краю карусели, то карусель начнет вращательное движение. Чем дальше точка приложения силы, тем легче раскрутить карусель до заданной угловой скорости (параметры вращательного движения описываются в главе 1 1 ).

В верхней части рис. 10.5 показаны весы-качели с грузом массы ​ ( m_1 ) ​ на одном конце и грузом большей массы ​ ( m_2=2m_1 ) ​ посередине. Чтобы уравновесить весы-качели, нужно сместить груз с большей массой ​ ( m_2 ) ​ к другому концу весов, как показано в нижней части рис. 10.5. Как известно из опыта, размещение груза в точке вращения весов не приводит к уравновешиванию весов. Чтобы уравновесить весы, нужно сдвинуть груз с большей массой ( m_2=2m_1 ) к другому концу весов на расстояние вдвое меньшее, чем расстояние от точки вращения до второго груза с массой ​ ( m_1 ) ​.

Сила через радиус вектор

Знакомимся с формулой момента силы

Для уравновешивания весов важно не только, какая сила используется, но и где она прикладывается. Расстояние от точки приложения силы до точки вращения называется плечом силы.

Предположим, что нам нужно открыть дверь, схематически показанную на рис. 10.6. Как известно из опыта, дверь практически невозможно открыть, если прилагать силу вблизи петель (см. схему А на рис. 10.6). Однако, если приложить силу посередине двери, то открыть ее будет гораздо проще (см. схему Б на рис. 10.6). Наконец, прилагая силу у противоположного края двери по отношению к расположению петель, ее можно открыть с еще меньшим усилием (см. схему В на рис. 10.6).

На рис. 10.6 расстояние от мест расположения петель до точки приложения силы и есть плечо силы. Моментом силы называется произведение прилагаемой силы ​ ( F ) ​ на плечо силы ​ ( l ) ​:

Сила через радиус вектор

Момент силы в системе СИ измеряется в Н·м, а в системе СГС — в дин·см (подробнее эти системы единиц измерения описываются в главе 2).

Сила через радиус вектор

Вернемся к примеру на рис. 10.6, где требуется открыть дверь шириной 1 м с помощью силы величиной 200 Н. В случае А (см. рис. 10.6) плечо силы равно нулю и произведение этого плеча на силу любой величины (включая и силу 200 Н) даст нулевой момент силы. В случае Б (см. рис. 10.6) плечо силы равно половине ширины двери, т.е. плечо силы ​ ( l ) ​ равно 0,5 м и момент силы будет равен:

Сила через радиус вектор

В случае В (см. рис. 10.6) плечо силы равно ширине двери, т.е. плечо силы ( l ) равно 1 м и момент силы будет равен:

Сила через радиус вектор

Итак, увеличение вдвое длины плеча при той же силе дает нам такое же увеличение момента силы. До сих пор сила прилагалась перпендикулярно к линии, соединяющей точку приложения силы и точку вращения. А что будет с моментом силы, если дверь будет немного приоткрыта и направление силы уже будет не перпендикулярным?

Разбираемся с направлением приложенной силы и плечом силы

Допустим, что сила приложена не перпендикулярно к поверхности двери, а параллельно, как показано на схеме А на рис. 10.7. Как известно из опыта, таким образом дверь открыть невозможно. Дело в том, что у такой силы нет проекции, которая бы могла вызвать вращательное движение. Точнее говоря, у такой силы нет ненулевого плеча для создания вращательного момента силы.

Сила через радиус вектор

Размышляем над тем, как создается момент силы

Момент силы из предыдущего примера требуется создавать всегда для открытия двери независимо от того, какую дверь приходится открывать: легкую калитку изгороди или массивную дверь банковского сейфа. Как вычислить необходимый момент силы? Сначала нужно определить плечо сил, а потом умножить его на величину силы.

Однако не всегда все так просто. Посмотрите на схему Б на рис. 10.7. Как видите, сила прилагается под некоторым углом ​ ( theta ) ​. Как в таком случае определить плечо силы? Если бы угол ( theta ) был прямым, то мы могли бы воспользоваться уже известно нам формулой:

Сила через радиус вектор

Однако в данном случае угол ( theta ) не является прямым.

В таком случае нужно просто помнить следующее правило: плечом силы называется длина перпендикуляра, опущенного из предполагаемой точки вращения на прямую, относительно которой действует сила.

Попробуем применить это правило определения плеча силы для схемы Б на рис. 10.7. Нужно продлить линию, вдоль которой действует сила, а потом опустить на нее перпендикуляр из точки вращения двери. Из полученного прямоугольного треугольника легко определить искомое плечо силы:

Сила через радиус вектор

Если угол ( theta ) равен нулю, то никакого момента силы не возникает (см. схему А на рис. 10.7).

Итак, получаем для момента силы для схемы Б на рис. 10.7:

Сила через радиус вектор

Например, если требуется открыть дверь шириной 1 м с помощью силы величиной 200 Н, приложенной под углом ( theta ) = 45°, то создаваемый момент этой силы будет равен:

Сила через радиус вектор

Как видите, этот момент силы 140 Н·м меньше, чем момент силы 200 Н·м, созданный под прямым углом на схеме В на рис. 10.6.

Определяем направление момента силы

Учитывая все приведенные выше сведения о моменте силы, у читателя вполне может возникнуть подозрение, что момент силы обладает направлением. И это действительно так. Момент силы является векторной величиной, направление которой определяется по правилу правой руки. Если охватить ладонью ось вращения, а пальцы свернуть так, чтобы они указывали на направление силы, то вытянутый большой палец укажет направление вектора момента силы.

На рис. 10.8 показан пример силы ​ ( mathbf ) ​ с плечом ( mathbf ) и соответствующего вектора момента сил ( mathbf ) .

Сила через радиус вектор

Видео:Лекция 4. ВЕКТОРА │ кинематика с нуляСкачать

Лекция 4. ВЕКТОРА │ кинематика с нуля

Уравновешиваем моменты сил

В жизни нам часто приходится сталкиваться с равновесными состояниями. Как равновесное механическое состояние определяется с точки зрения физики? Обычно физики подразумевают под равновесным состоянием объекта то, что он не испытывает никакого ускорения (но может двигаться с постоянной скоростью).

Для поступательного движения равновесное состояние означает, что сумма всех сил, действующих на объект равна нулю:

Сила через радиус вектор

Иначе говоря, результирующая действующая сила равна нулю.

Вращательное движение также может быть равновесным, если такое движение происходит без углового ускорения, т.е. с постоянной угловой скоростью.

Для вращательного движения равновесное состояние означает, что сумма всех моментов сил, действующих на объект, равна нулю:

Сила через радиус вектор

Как видите, это условие равновесного вращательного движения аналогично условию равновесного поступательного движения. Условия равновесного вращательного движения удобно использовать для определения момента силы, необходимого для уравновешивания неравномерно вращающегося объекта.

Простой пример: вешаем рекламный плакат

Предположим, что у входа в магазин нужно повесить большой и тяжелый рекламный плакат, как показано на рис. 10.9. Хозяин магазина пытался сделать это и раньше, но у него ничего не выходило, поскольку он использовал очень непрочный болт.

Сила через радиус вектор

Попробуем определить силу, с которой болт должен удерживать всю конструкцию, показанную на рис. 10.9. Пусть плакат имеет массу 50 кг и висит на шесте 3 м от точки опоры шеста, а массу шеста в данном примере будем считать пренебрежимо малой. Болт находится в 10 см от точки опоры шеста.

Согласно условиям равновесия, сумма всех моментов сил должна быть равна нулю:

Сила через радиус вектор

Сила через радиус вектор

где ​ ( mathbf ) ​ — это момент силы со стороны плаката, а ( mathbf ) — это момент силы со стороны болта.

Чему равны упомянутые моменты? Момент силы со стороны плаката можно легко определить по формуле:

Сила через радиус вектор

где ​ ( m ) ​ = 50 кг — это масса плаката, ​ ( mathbf ) ​ — ускорение свободного падения под действием силы гравитационного притяжения (силы тяжести), ​ ( mmathbf ) ​ — сила тяжести плаката, а ​ ( l_п ) ​ = 3 м — это плечо силы тяжести плаката.

Подставляя значения, получим:

Сила через радиус вектор

Обратите внимание, что здесь перед ускорением свободного падения под действием силы гравитационного притяжения стоит знак “минус”. Это значит, что вектор ускорения свободного падения направлен вниз, т.е. в сторону, противоположную выбранному направлению оси координат.

Момент силы со стороны болта определяется формулой:

Сила через радиус вектор

где ( mathbf ) — это искомая сила, с которой болт должен удерживать всю конструкцию, а ( l_б ) = 0,1 м — это ее плечо.

Подставляя полученные выражения для моментов сил в формулу:

Сила через радиус вектор

Сила через радиус вектор

Отсюда с помощью простых алгебраических преобразований получим искомую силу:

Сила через радиус вектор

Как видите сила, с которой болт должен удерживать всю конструкцию, направлена противоположно вектору ускорения свободного падения, т.е. вверх.

Подставляя значения, получим искомый ответ:

Сила через радиус вектор

Более сложный пример: учитываем силу трения при расчете равновесия

Рассмотрим теперь другую более сложную задачу, в которой для расчета равновесия системы объектов нужно учесть силу трения. Предположим, что работник магазина решил использовать переносную лестницу для монтажа рекламного плаката, как схематически показано на рис. 10.10.

Пусть лестница длиной ​ ( l_л ) ​ = 4 м стоит под углом ​ ( theta ) ​ = 45° к поверхности тротуара, работник имеет массу ​ ( m_р ) ​ = 45 кг и находится на ней на расстоянии ( l_р ) = 3 м от нижнего конца лестницы, лестница имеет массу (m_л ) = 20 кг, а коэффициент трения покоя между поверхностью тротуара и концами лестницы равен ​ ( mu_п ) ​ = 0,7. Вопрос: будет ли такая система объектов находиться в состоянии равновесия? Попросту говоря, достаточной ли будет сила трения, чтобы лестница вместе с рабочим не соскользнула и упала?

Итак, для ответа на этот вопрос нам нужно учесть следующие силы, действующие на лестницу:

  • ​ ( mathbf ) ​ — нормальная сила со стороны стены;
  • ( mathbf ) — вес рабочего;
  • ( mathbf ) — вес лестницы;
  • ( mathbf<F_> ) — сила трения между поверхностью тротуара и концами лестницы;
  • ( mathbf ) — нормальная сила со стороны тротуара.

Согласно условиям равновесного поступательного движения, сумма всех сил, действующих на лестницу, должна быть равна нулю:

Сила через радиус вектор

Сила через радиус вектор

Это значит, что сумма всех сил вдоль горизонтальной оси, а именно нормальной силы со стороны стены ( mathbf ) и силы трения между поверхностью тротуара и концами лестницы ( mathbf<F_> ) , должна быть равна нулю, то есть:

Сила через радиус вектор

Сила через радиус вектор

Перефразируя поставленный выше вопрос о достаточности силы трения, получим: выполняется ли условие

Сила через радиус вектор

Кроме того, сумма всех сил вдоль вертикальной оси, а именно веса рабочего ( mathbf ) , веса лестницы ( mathbf ) и нормальной силы со стороны тротуара ( mathbf ) , должна быть равна нулю, то есть:

Сила через радиус вектор

Сила через радиус вектор

Согласно условиям равновесного вращательного движения, также необходимо равенство нулю всех моментов сил, действующих на лестницу:

Сила через радиус вектор

Пусть предполагаемой точкой вращения является нижний конец лестницы, тогда должна быть равна нулю сумма моментов сил, создаваемых весом рабочего ​ ( mathbf ) ​, весом лестницы ( mathbf ) и нормальной силой со стороны стены ( mathbf ) :

Сила через радиус вектор

Сила через радиус вектор

Сила через радиус вектор

Поскольку ​ ( L_р=l_р ) ​, ​ ( L_л=l_л/2 ) ​ (центр тяжести лестницы находится посередине лестницы), ( L_с=l_л ) , ​ ( alpha=360^-theta ) ​, ( beta=360^-theta ) и ​ ( gamma=theta ) ​, то получим:

Сила через радиус вектор

Сила через радиус вектор

Таким образом, мы получили систему из двух уравнений с двумя неизвестными сил ( mathbf ) и ( mathbf ) :

Сила через радиус вектор

Зададимся вопросом: соблюдается ли условие

Сила через радиус вектор

Из системы двух уравнений получим:

Сила через радиус вектор

Итак, остается выяснить, соблюдается ли условие:

Сила через радиус вектор

После подстановки значений получим:

Сила через радиус вектор

Поскольку ​ ( mu_т ) ​ = 0,7, то упомянутое условие соблюдается, и лестница с рабочим не упадет.

💡 Видео

Урок 8. Векторные величины. Действия над векторами.Скачать

Урок 8. Векторные величины. Действия над векторами.

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Физика | Ликбез по векторамСкачать

Физика | Ликбез по векторам

ЧК_МИФ_1_1_1_3_(L2)__Материальная точка и ее радиус-векторСкачать

ЧК_МИФ_1_1_1_3_(L2)__Материальная точка и ее радиус-вектор

Урок 9. Проекции вектора на координатные осиСкачать

Урок 9. Проекции вектора на координатные оси

Магия вращательного движения, или Центробежная сила, которой не существуетСкачать

Магия вращательного движения, или Центробежная сила, которой не существует

05. Пространство и время. Координаты. Вектор перемещения. Радиус вектор.Скачать

05.  Пространство и время.  Координаты.  Вектор перемещения.  Радиус вектор.
Поделиться или сохранить к себе: