Задачи по физике — это просто!
Элементарные задачи из курса школьной физики.
Векторы в физике
Многие физические величины зависят от направления и называются векторными, например, скорость, перемещение, ускорение.
При работе с векторами (векторными величинами) существуют специальные обозначения, которые надо запомнить:
Изображение вектора на чертеже:
Если вектор параллелен координатной оси, то модуль вектора равен модулю проекции вектора на эту ось:
Проекция вектора может быть положительной или отрицательной (в зависимости от его положения относительно оси координат):
Если вектор перпендикулярен оси, то проекция вектора на эту ось равна нулю!
Как бы ни был направлен вектор, его модуль всегда можно рассчитать по формуле:
Сложение векторов (а это часто приходится выполнять в задачах) можно производить графически двумя способами — треугольника и параллелограмма.
Расчетные формулы прямолинейного равномерного движения
Расчетные формулы для прямолинейного равномерного движения — это формулы в проекциях векторов на координатную ось.
Скорость тела:
где
Vx — проекция вектора скорости на координатную ось х
Sx — проекция вектора перемещения на ось х
t — время, за которое совершается данное перемещение
Координата тела в любой момент времени
или после подстановки скорости:
Последнюю формулу иначе называют уравнением прямолинейного равномерного движения:
xo — начальная координата тела
x — конечная координата тела через время t после начала движения
Расстояние между движущимися телами при прямолинейном равномерном движении в любой момент времени:
l — расстояние между телами в любой момент времени движения
x1 — конечная координата первого тела на момент определения расстояния между телами
x2 — конечная координата второго тела на момент определения расстояния между телами
- Как составить силовые уравнения
- Что такое равнодействующая
- Левая часть силового уравнения
- Правая часть силового уравнения
- Векторы сил параллельны
- Векторы сил не параллельны
- Куда направить оси
- Движение по наклонной плоскости
- Выражение для ускорения
- Выражение для пройденного пути
- Применение векторов при решении задач по физике
- 📸 Видео
Видео:Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??Скачать
Как составить силовые уравнения
В задачах динамики учитывают силы, действующие на тело. Векторы сил могут действовать в различных направлениях. Большинство школьных задач можно решить, располагая векторы сил в одной плоскости. Поэтому, в статье будем рассматривать векторы, лежащие в одной плоскости — компланарные векторы.
Видео:Решение графических задач на силу АмпераСкачать
Что такое равнодействующая
Равнодействующий вектор – это вектор, который мы получаем, когда складываем несколько векторов сил.
Результат сложения может дать:
- вектор, имеющий длину,
- или вектор, не имеющий длины.
Примечание: Когда у вектора отсутствует длина, говорят, что вектор равен нулю. На рисунке нулевой вектор можно изобразить одной точкой. Длины у точки нет – т. е. длина нулевая, а направление может быть любым.
Длина вектора содержит сумму квадратов всех его проекций на оси.
Где ( a_ ) и ( a_ ) — это проекции вектора (ссылка) ( vec ) на оси Ox и Oy.
Когда вектор равен нулю, равна нулю каждая его проекция на осях.
Длина вектора отлична от нуля, когда хотя бы одна его проекция ненулевая.
Видео:Физика | Ликбез по векторамСкачать
Левая часть силового уравнения
В левой части силового уравнения записываем силы, действующие на тело.
Когда векторы сил направлены вдоль параллельных прямых, проводим на рисунке одну ось. Если векторы сил не параллельные, проводим две оси на плоскости. Раскладываем векторы на проекции по осям. Для каждой оси составляем отдельное уравнение. Количество уравнений совпадает с количеством осей.
Если сила сонаправлена с осью, то она войдет в левую часть уравнения со знаком «+», а если она направлена против оси — то со знаком «минус».
Видео:Векторы и действия над ними, проекция вектора на координатные оси. 9 класс.Скачать
Правая часть силового уравнения
В правой части уравнения записываем равнодействующую. В задаче может присутствовать несколько осей, вдоль каждой оси направляем отдельную проекцию равнодействующей.
Примечание: Тело может вдоль одной оси двигаться с ускорением, а вдоль другой оси двигаться без ускорения, или, вообще, покоиться. Например, тело может двигаться по вертикали под действием силы тяжести, а по горизонтали при этом не смещаться.
Когда проекция равнодействующей вдоль какой-либо оси не равна нулю, тело по оси будет двигаться с ускорением. Это следует из второго закона Ньютона.
Тогда в правой части уравнения запишем:
- (ma), если ускорение направлено туда же, куда направлена ось;
- (- ma), если ускорение направлено противоположно оси;
А когда проекция равнодействующей на ось нулевая, ускорение вдоль оси отсутствует. Тогда вдоль этой оси тело движется с неизменной скоростью, или же, вдоль этой оси движение отсутствует. Это следует из первого закона Ньютона.
В правой части уравнения запишем ноль (0 = ускорения нет).
Видео:Тренировочные задания по теме: "Результирующая сила"Скачать
Векторы сил параллельны
В случае, когда векторы направлены вдоль одной прямой, достаточно выбрать и провести единственную ось.
Выясним, как выглядит силовое уравнение для задачи, в которой векторы сил направлены вдоль единственной оси. Например, парашютист спускается вертикально вниз (рис. 1) на парашюте под действием силы тяжести.
Проведем на рисунке ось, направим ее вверх.
Примечание: Мы можем направить ось вниз, если захотим. При таком направлении оси знаки проекций векторов изменятся на противоположные, но на конечный ответ это никак не повлияет.
Составим левую часть уравнения. В левой части мы запишем силы, действующие на парашютиста:
Сила ( F_<text>) направлена по оси, поэтому войдет в уравнение со знаком «+». А сила ( m cdot g ) вошла в уравнение со знаком «минус», так как направлена против оси.
В правую часть уравнения поместим равнодействующую.
Размеры парашюта рассчитаны так, что парашютист опускается вниз с постоянной (неизменной, т. е. одной и той же) скоростью. Значит, скорость есть, она не меняется, ускорения нет.
Математики запишут, что ускорение есть, но оно – нулевое (vec=0).
То есть, вдоль вертикальной оси тело движется без ускорения, значит, силы компенсировались. По первому закону Ньютона, равнодействующая равна нулю и, в правой части уравнения запишем ноль.
Примечания:
- На рисунке 1 скорость обозначена красным вектором, направленным вниз и обозначенным, как (vec<v_>). Обычно математики дописывают нижний индекс к величине, которая не должна меняться. Так как у вектора скорости этот индекс есть, скорость считаем неизменной.
- На рисунке векторы скоростей и ускорений нужно рисовать отдельно от векторов сил! Решая задачу, мы будем складывать векторы (ссылка), имеющие одинаковую размерность. Силы измеряют в Ньютонах, поэтому их можно складывать. А ускорения и скорости измеряют в других единицах, с Ньютонами их сложить не получится. Именно поэтому, чтобы не запутаться, ускорения и скорости рисуем на небольшом расстоянии от тела, отдельно от векторов сил.
Итоговое силовое уравнение имеет вид:
[large F_<text> — m cdot g = 0 ]
Зная массу парашютиста, можно вычислить силу сопротивления воздуха. А зная эту силу, можно рассчитать и размеры парашюта.
Видео:Урок 278. Задачи на силу Лоренца - 1Скачать
Векторы сил не параллельны
Когда векторы направлены вдоль разных прямых, будем проводить две взаимно перпендикулярные оси на плоскости.
Разберем задачу равнозамедленного движения тела по горизонтальной шероховатой поверхности (рис. 2).
Поверхность шероховатая, это намек на то, что есть сила трения. А если в условии напишут, что поверхность гладкая, значит, силы трения нет.
Движение равнозамедленное (ссылка), значит, скорость тела уменьшается и есть вектор ускорения, который направлен против вектора скорости.
Нарисуем взаимно перпендикулярные оси. Ось Ox проведем горизонтально, а ось Oy – вертикально. Рассмотрим оси и проекции векторов на них по очереди.
Горизонтальная ось. Пусть движение тела происходит в положительном направлении оси Ox. Сила трения всегда направлена против движения, поэтому направим ее влево. Скорость тела направлена вправо и будет уменьшаться, значит, ускорение, так же, направим влево. Вектор ускорения рисуем отдельно от векторов сил.
Наличие ускорения говорит о том, что вдоль оси Ox равнодействующая имеет не нулевую проекцию. Ускорение направлено против оси, запишем (- ma) в правой части уравнения.
Так выглядит уравнение для горизонтальной оси
Вертикальная ось. Вниз направлена сила тяжести, а вверх – сила реакции опоры. Так как поверхность горизонтальная и тело не движется ни вверх, ни вниз, то движения вдоль оси Oy нет. Значит, сила тяжести и реакция опоры компенсировались и нет ускорения вдоль оси Oy. В правой части уравнения для вертикальной оси запишем ноль.
Для вертикальной оси уравнение выглядит так:
[large N — m cdot g = 0 ]
Система, пригодная для решения задачи, состоит из двух уравнений
Видео:Урок 11. Решение задач на действия с векторамиСкачать
Куда направить оси
Разберем равнозамедленное движение тела вверх по наклонной шероховатой плоскости (рис. 3).
Силы, действующие на тело в этой задаче, не параллельные, направлены вдоль разных прямых. Поэтому для составления уравнений нужно использовать две взаимно перпендикулярные оси. Попробуем для начала провести ось Oy вертикально, а ось Ox горизонтально.
Из рисунка 3 видно, вдоль оси направлен только один вектор (mg). Остальные векторы сил не параллельны ни одной из осей. Такие векторы придется раскладывать на проекции, это усложнит конечную систему уравнений.
Если выберем оси так, как показано на рисунке 3, на проекции нужно будет разложить три вектора.
Попробуем теперь провести оси так, чтобы как можно большее количество векторов оказались параллельными осям (рис. 4). Из рисунка видно, что только один вектор (mg) окажется ненаправленным вдоль какой-либо оси. Остальные векторы сил параллельны осям.
При таком выборе осей раскладывать на проекции придется только один вектор. Это позволит быстрее решить задачу и решать более простые уравнения.
Примечание: Если мы выбререм оси так, как это представлено на рисунке 3, получим более сложные уравнения. Но решив их, мы получим точно такой же ответ, как и в случае выбора осей на рисунке 4.
Выводы:
- Выбор осей на конечный результат не влияет! А влияет только на сложность полученных уравнений.
- Оси проводим так, чтобы как можно больше векторов оказались направленными вдоль осей.
Видео:Как разложить силы на проекции (динамика 10-11 класс) ЕГЭ по физикеСкачать
Движение по наклонной плоскости
Составим систему уравнений для решения такой задачи:
Велосипедист подъезжает с начальной скоростью к подъему, посыпанному песком и, едет в гору на велосипеде по инерции, не крутя педали. Масса велосипедиста с велосипедом, начальная скорость его, коэффициент сопротивления поверхности и угол наклона известны.
Нужно составить систему силовых уравнений, чтобы найти ускорение велосипедиста. А после, зная начальную скорость и ускорение, найти путь, который велосипедист сможет проехать по инерции в горку.
Выражение для ускорения
Составим рисунок, на котором изобразим силы, действующие на велосипедиста (рис. 5)
Мы провели оси так, чтобы пришлось разложить на проекции только один вектор и система силовых уравнений оказалась достаточно простой.
Пользуясь осями координат, составляем теперь уравнения в проекциях.
Уравнение для проекций векторов на ось Ox:
[ large — F_<text> – m cdot g_ = — m cdot a ]
Уравнение для проекций векторов на ось Oy:
[ large N – m cdot g_ = 0 ]
Разложим теперь силу тяжести — вектор (mg) на проекции. Чтобы проделать это разложение, нужно отметить угол (alpha ) межу вектором (mg) и одной из осей. В нашем случае, это угол между вектором (mg) и осью Oy.
[ large begin m cdot g_ = mg cdot cos left(alpha right) \ m cdot g_ = mg cdot sin left(alpha right) end ]
Подставив разложение вектора (mg) в уравнения для осей, получим такую систему уравнений
[ large begin — F_<text> – mg cdot sin left(alpha right) = — m cdot a \ N – mg cdot cos left(alpha right) = 0 end ]
Дополним эту систему выражением для силы трения.
Запишем эти уравнения в систему и выразим из нее уравнение для ускорения.
[ large begin N = mg cdot cos left(alpha right) \ F_<text> = mu cdot mg cdot cos left(alpha right) \ mu cdot mg cdot cos left(alpha right) + mg cdot sin left(alpha right) = m cdot a end ]
Поделим нижнее уравнение системы на массу велосипедиста и запишем окончательно уравнение для ускорения:
[ large mu cdot g cdot cos left(alpha right) + g cdot sin left(alpha right) = a ]
Выражение для пройденного пути
Запишем выражения для связи скоростей и пройденного пути. Велосипедист движется по инерции в гору и его скорость уменьшается из-за силы тяжести и силы сопротивления поверхности, посыпанной песком. Когда скорость велосипедиста обратится в ноль, он, проехав часть пути в гору, остановится. Используем систему двух уравнений, она описывает путь при учете уменьшения скорости до нуля:
[ large begin 0 = v_ — a cdot t \ S = v_ cdot t — a cdot frac end ]
Получим теперь уравнение для пути, в котором будут присутствовать только начальная скорость и ускорение и, будет отсутствовать время.
Упрощенная система для решения задачи теперь включает всего два уравнения
[ large begin mu cdot g cdot cos left(alpha right) + g cdot sin left(alpha right) = a \ S = v_ cdot frac<v_> — frac<v_> cdot frac<v_> end ]
Подставив в эту систему известные значения начальной (v_) скорости велосипедиста, коэффициент (mu) сопротивления поверхности и угол (alpha) наклона плоскости, сможем посчитать путь, пройденный велосипедистом до его полной остановки.
Видео:Алгоритм решения задач на второй закон Ньютона часть 1| Физика TutorOnlineСкачать
Применение векторов при решении задач по физике
Геометрический подход к решению физических задач наследуется еще от древних греков. Векторный анализ является пограничной чертой между математикой и физикой. На языке векторов формируются понимание основных законов механики и электродинамики.
На уроках физики учитель при изучении механических явлений дает определение радиус-вектора. Радиус-вектор – это направленный отрезок, проведенный из начала координат в данную точку пространства. Многие физические величины, как и радиус-вектор характеризуют и числовым значением и направлением. Например: скорость, перемещение, импульс, напряженность электрического поля, сила являются физическими векторными величинами. Длину такого вектора называют модулем вектора. Интуитивное понимание вектора у учащихся складывается с первых же уроков физики в 7 и 8 классе.
Проведем сравнение понятия вектора в физике и математике:
В математике | В физике | |
Изучаем векторы ( a ,b , c ) | Изучаем векторные величины ( F, v, S) | |
Вектор можно отложить от любой точки плоскости | Вектор имеет точку приложения (на теле) | |
Правила сложения векторов | ||
Правило треугольника и правило параллелограмма | Чаще применяем правило параллелограмма | |
Длину вектора называем модулем | Длину вектора называем длиной |
Понимание вектора в физике и математике происходит поэтапно, когда ученики раскрывают и изучают следующие вопросы:
В математике: | В физике: |
Координатная прямая. Координатная плоскость. Координаты точки. | Понятие системы отсчета. Координаты, которыми задается положение тела на прямой, на плоскости, в пространстве, и их количество. |
Вектор — направленный отрезок. | |
Точка — это вектор нулевой длины или нулевой вектор. | |
Если от проекции начала вектора к проекции его конца надо двигаться по направлению оси, то проекция вектора на ось считают положительной. Если от проекции начала вектора к проекции его конца надо двигаться в направлении, противоположном направлению оси, то проекция отрицательная. Если вектор перпендикулярен оси координат, то проекция равна нулю. | |
Вспомним, как связаны проекция вектора перемещения и координаты тела. (sx = х — х0, sy = y — y0) Вспомним формулы для расчета координат тела в любой момент времени (х = х0 + sx, y = y0 + sy). | |
Операции сложения векторов. | |
Правило треугольника. Правило многоугольника. | |
Умножение векторов | |
Произведение векторов (9 класс) Произведение векторов – скалярная величина. | Вычисление механической работы (10 класс): Механическая работа – скалярная величина. |
При умножении скаляра на вектор получается вектор. |
|
Операция проектирования | |
Проекция ax вектора на ось X есть отрезок АВ на оси Х, где точки А и В являются основаниями перпендикуляров опущенных из начала и конца вектора на ось Х. Свойства:
| Многие задачи динамики начинаются с записи второго закона Ньютона в векторной форме. Далее переходят к его проектированию на подходящие оси. |
Учителя математики и физики должны комбинировать этот материал, разбавлять свои уроки дополнительной информацией из смежных предметов. Глубокое понимание вектора и действий с векторами у учеников сложится только посредством интеграции математического и физического определения этих понятий. Она должна быть как на уроках математики, так и на уроках физики все время, которое отводится на изучении темы «вектор».
Рассмотрим некоторые физические задачи, которые учитель математики может решить на уроках геометрии.
Задача. Парашютист со скоростью 4 м/с спускается с высоты 2 км вертикально вниз. Скорость горизонтального ветра равно 3 м/с. На какое расстояние отнесет его от места падения?
- Запишем закон сложения скоростей в векторном виде.
- Сделаем чертеж, произведя сложение векторов скоростей.
- Искомый вектор является гипотенузой прямоугольного треугольника. По теореме Пифагора вычислим её, найдя тем самым модуль скорости.
- Зная, что при прямолинейном равномерном движении модуль перемещения пропорционален скорости, составим пропорцию и найдем модуль искомого перемещения.
Следующие задачи рекомендуем рассмотреть после изучения тригонометрических функций острого угла.
Задача. Скорость лодки относительно течения 10 м/с, скорость течения 5 м/с.Под каким углом к береговой линии должен лодочник вести лодку, чтобы попасть на противоположный берег строго против того места, от которого он отплыл? Сделайте чертеж.
Задача. С какой силой F (эф) надо удерживать груз весом Р (пэ) на наклонной плоскости, чтобы он не сползал вниз?
Решение: Пусть O – центр тяжести груза, к которому приложена сила P. Разложим вектор по двум взаимно перпендикулярным направлениям. Сила перпендикулярна наклонной плоскости и не вызывает перемещения груза. Сила , удерживающая груз, должна быть равной по величине и противоположной по направлению силе. Поэтому .
Задача. Тело движется по окружности со скоростью v. Найдите модуль изменения скорости тела за четверть периода.
Решение: Пусть в начале движения в точке A скорость равна v . За четверть периода тело оказалось в точке B. Модуль скорости не изменяется и равен v. Различно направление скорости. Выполним вычитание векторов и придем к результату .
Теперь рассмотрим метод решения задач кинематики и динамики, основанный на построении так называемых векторных многоугольников перемещений, скоростей, ускорений, сил, импульсов. Рассмотрим краткие теоретические основы и некоторые методические рекомендации по возможности применения геометрических (векторных) способов решения задач кинематики и динамики в школьном курсе физики. Применение векторных способов требует знания основ тригонометрии, в частности, теорем синусов и косинусов.
Векторная запись многих уравнений физики более полно отображает соответствующие процессы, в частности в современном школьном курсе механики. Векторная форма уравнений в сочетании с соответствующими рисунками раскрывает физическую ситуацию в задаче и предопределяет ее успешное решение. Есть определенные алгоритмы решения физической задачи векторным способом.
Кинематика |
|
Динамика |
|
Когда в задаче рассматривается движение нескольких тел, нужно записать второй закон Ньютона для каждого тела. При составлении уравнений нужно учесть все кинематические и динамические связи между движущимися телами. |
Для вычислений при решении задачи чаще всего используют соответствующие уравнения в проекции на оси координат, поэтому возникает необходимость обучить учащихся преобразованию векторного уравнения в уравнения для проекций по следующему алгоритму:
- изобразить вектор графически в избранном масштабе; указать на рисунке начало координат и координатную ось;
- спроецировать на ось начальную и конечную точки вектора;
- найти длину отрезка между проекциями этих точек на ось; если можно, выразить длину отрезка через модуль вектора;
- обозначить наименьший угол между положительным направлением оси и направлением вектора; определить этот угол;
- если указанный угол острый, то приписать проекции знак “+», если нет, то приписать проекции знак “-«.
- записать в уравнении длину отрезка проекции вектора с соответствующим знаком.
Теперь решим задачи:
Задача.Тело брошено вверх перпендикулярно плоскости, наклоненной под угломαк горизонту. На каком расстоянии от места броска тело упадет на эту наклонную плоскость? Сопротивлением движения пренебречь.
Решение: Изобразим треугольник перемещений, соответствующий условию задачи и соотношению . Видим, что , откуда время движения . Тогда искомое расстояние будет .
Задача. Две частицы брошены одновременно из одной точки с одинаковыми по модулю скоростямиv: первая – вертикально вверх, вторая – горизонтально. Найдите расстояние между ними спустя время t.
Решение: Так как движение частиц происходит под действием силы тяжести, ускорения частиц одинаковы и равны g. Следовательно, относительное движение второй частицы к первой — равномерное и прямолинейное с постоянной скоростью . Тогда искомое расстояние будет равным: .
Задача. Тело брошено горизонтально со скоростью v0. Найдите скорость тела и угол отклонения через время t.
Решение: В векторной форме процесс описан так: . Проекция скорости на вертикальную и горизонтальную оси: . По теореме Пифагора получаем .
Изучая, разрабатывая и используя новый математический аппарат, физики иногда незаслуженно забывают о ранее найденных и веками эффективно служивших делу физической науки математических способах и приемах. Математика является языком физики, и свободное владение математическим аппаратом облегчает понимание физической сущности явлений и процессов.
📸 Видео
Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Явление тяготения. Сила тяжести. Практическая часть - решение задачи. 7 класс.Скачать
Урок 272. Задачи на закон Ампера - 1Скачать
Построение проекции вектора на осьСкачать
Урок 315. Решение задач динамикиСкачать
Урок 8. Векторные величины. Действия над векторами.Скачать
Силы трения. Практическая часть - решение задачи. 7 класс.Скачать
Задача ЕГЭ по физике │Вектора сил - ДинамикаСкачать
Электромагнитная ИНДУКЦИЯ. Решение ЗАДАЧ. ЕГЭ Физика. Николай Ньютон | ТехноскулСкачать
Урок 271. Модуль вектора магнитной индукции. Закон АмпераСкачать
МАГНИТНАЯ ИНДУКЦИЯ 11 класс физика сила Ампера сила ЛоренцаСкачать