Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

Все четыре треугольника, заштрихованные на рисунке, равновелики.

а) Докажите, что все четыре четырехугольника, не заштрихованные на нем, тоже равновелики.

б) Найдите площадь одного четырехугольника, если площадь одного заштрихованного треугольника равна 1.

Критерии оце­ни­ва­ния вы­пол­не­ния заданияБаллы
Име­ет­ся вер­ное до­ка­за­тель­ство утвер­жде­ния пунк­та а и обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те б.3
По­лу­чен обос­но­ван­ный ответ в пунк­те б.

Име­ет­ся вер­ное до­ка­за­тель­ство утвер­жде­ния пунк­та а и при обос­но­ван­ном ре­ше­нии пунк­та б по­лу­чен не­вер­ный ответ из-за ариф­ме­ти­че­ской ошибки.

2
Име­ет­ся вер­ное до­ка­за­тель­ство утвер­жде­ния пунк­та а.

При обос­но­ван­ном ре­ше­нии пунк­та б по­лу­чен не­вер­ный ответ из-за ариф­ме­ти­че­ской ошибки.

Содержание
  1. Четырехугольник — виды и свойства с примерами решения
  2. Внутренние и внешние углы четырехугольника
  3. Сумма внутренних углов выпуклого четырёхугольника
  4. Сумма внешних углов выпуклого четырёхугольника
  5. Параллелограмм
  6. Параллелограмм и его свойства
  7. Признаки параллелограмма
  8. Прямоугольник
  9. Признак прямоугольника
  10. Ромб и квадрат
  11. Свойства ромба
  12. Трапеция
  13. Средняя линия треугольника
  14. Средняя линия трапеции
  15. Координаты середины отрезка
  16. Теорема Пифагора
  17. Справочный материал по четырёхугольнику
  18. Пример №1
  19. Признаки параллелограмма
  20. Пример №2 (признак параллелограмма).
  21. Прямоугольник
  22. Пример №3 (признак прямоугольника).
  23. Ромб. Квадрат
  24. Пример №4 (признак ромба)
  25. Теорема Фалеса. Средняя линия треугольника
  26. Пример №5
  27. Пример №6
  28. Трапеция
  29. Пример №7 (свойство равнобедренной трапеции).
  30. Центральные и вписанные углы
  31. Пример №8
  32. Вписанные и описанные четырёхугольники
  33. Пример №9
  34. Пример №10
  35. Решение четыре треугольника один четырехугольник
  36. 🎬 Видео

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Четырехугольник — виды и свойства с примерами решения

Содержание:

Четырёхугольник — это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки — сторонами четырёхугольника.

Решение четыре треугольника один четырехугольник

Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне — противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин — противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области — внутреннюю и внешнюю.

Решение четыре треугольника один четырехугольник

Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).

Решение четыре треугольника один четырехугольник

Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.

Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.

Решение четыре треугольника один четырехугольник

Видео:8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Внутренние и внешние углы четырехугольника

Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов Решение четыре треугольника один четырехугольникуглы Решение четыре треугольника один четырехугольникявляются внешними.

Решение четыре треугольника один четырехугольник

Каждый внутренний угол выпуклого четырёхугольника меньше Решение четыре треугольника один четырехугольникГрадусная мера внутреннего угла невыпуклого четырёхугольника может быть больше Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

Сумма внутренних углов выпуклого четырёхугольника

Теорема. Сумма внутренних углов выпуклого четырёхугольника равна Решение четыре треугольника один четырехугольникРешение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Решение четыре треугольника один четырехугольникДоказательство представьте в виде двухстолбчатой таблицы.

Сумма внешних углов выпуклого четырёхугольника

Теорема. Сумма внешних углов выпуклого четырёхугольника равна Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.

Параллелограмм

Параллелограмм и его свойства

Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны. Решение четыре треугольника один четырехугольник

Теорема 1. Противоположные стороны параллелограмма конгруэнтны. Решение четыре треугольника один четырехугольник

Теорема 2. Противоположные углы параллелограмма конгруэнтны. Решение четыре треугольника один четырехугольник

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна Решение четыре треугольника один четырехугольникРешение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам. Решение четыре треугольника один четырехугольник

Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника. Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

Признаки параллелограмма

Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.

Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.

Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.

Прямоугольник

Параллелограмм, все углы которого прямые, называется прямоугольником.

Все свойства параллелограмма относятся к прямоугольнику.

Наряду с этим прямоугольник имеет следующее свойство:

Теорема. Диагонали прямоугольника конгруэнтны. Решение четыре треугольника один четырехугольник

Признак прямоугольника

Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.

Решение четыре треугольника один четырехугольник

Ромб и квадрат

Свойства ромба

Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:

Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом. Решение четыре треугольника один четырехугольник

Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если Решение четыре треугольника один четырехугольникто параллелограмм Решение четыре треугольника один четырехугольникявляется ромбом.

Решение четыре треугольника один четырехугольник

Доказательство теоремы 1.

Дано: Решение четыре треугольника один четырехугольникромб.

Докажите, что Решение четыре треугольника один четырехугольник

Доказательство (словестное): По определению ромба Решение четыре треугольника один четырехугольникПри этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что Решение четыре треугольника один четырехугольникравнобедренный. Медиана Решение четыре треугольника один четырехугольник(так как Решение четыре треугольника один четырехугольник), является также и биссектрисой и высотой. Т.е. Решение четыре треугольника один четырехугольникТак как Решение четыре треугольника один четырехугольникявляется прямым углом, то Решение четыре треугольника один четырехугольник. Аналогичным образом можно доказать, что Решение четыре треугольника один четырехугольник

Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.

Ромб:

  • 1. Все свойства параллелограмма действительны для ромба.
  • 2. Все стороны конгруэнтны.
  • 3. Диагонали взаимно перпендикулярны.
  • 4. Диагонали ромба делят его углы пополам.

Квадрат:

  • 1. Все свойства прямоугольника и ромба действительны для квадрата.
  • 2. Все углы прямые.
  • 3. Все стороны конгруэнтны.
  • 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.

Решение четыре треугольника один четырехугольник

Трапеция

Четырёхугольник, у которого только две стороны параллельны, называется трапецией.

Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.

Решение четыре треугольника один четырехугольник

Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.

Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.

Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны. Решение четыре треугольника один четырехугольник

Теорема 2. Диагонали равнобедренной трапеции конгруэнтны. Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

План доказательства теоремы 2

Дано: Решение четыре треугольника один четырехугольникравнобедренная трапеция. Решение четыре треугольника один четырехугольник

Докажите: Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

Средняя линия треугольника

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если Решение четыре треугольника один четырехугольниктогда Решение четыре треугольника один четырехугольникЗапишите в тетради доказательство теоремы, заполнив пропущенные строки.

Доказательство: через точку Решение четыре треугольника один четырехугольникпроведем параллельную прямую к прямой Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.

Исследование: 1) В треугольнике Решение четыре треугольника один четырехугольникчерез точку Решение четыре треугольника один четырехугольник— середину стороны Решение четыре треугольника один четырехугольникпроведите прямую параллельную Решение четыре треугольника один четырехугольникКакая фигура получилась? Является ли Решение четыре треугольника один четырехугольниктрапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Решение четыре треугольника один четырехугольникМожно ли утверждать, что Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

Доказательство. Пусть дан треугольник Решение четыре треугольника один четырехугольники его средняя линия Решение четыре треугольника один четырехугольникПроведём через точку Решение четыре треугольника один четырехугольникпрямую параллельную стороне Решение четыре треугольника один четырехугольникПо теореме Фалеса, она проходит через середину стороны Решение четыре треугольника один четырехугольникт.е. совпадает со средней линией Решение четыре треугольника один четырехугольникТ.е. средняя линия Решение четыре треугольника один четырехугольникпараллельна стороне Решение четыре треугольника один четырехугольникТеперь проведём среднюю линию Решение четыре треугольника один четырехугольникТ.к. Решение четыре треугольника один четырехугольникто четырёхугольник Решение четыре треугольника один четырехугольникявляется параллелограммом. По свойству параллелограмма Решение четыре треугольника один четырехугольникПо теореме Фалеса Решение четыре треугольника один четырехугольникТогда Решение четыре треугольника один четырехугольникТеорема доказана.

Средняя линия трапеции

Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.

Решение четыре треугольника один четырехугольник

Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Решение четыре треугольника один четырехугольник

Доказательство: Через точку Решение четыре треугольника один четырехугольники точку Решение четыре треугольника один четырехугольниксередину Решение четыре треугольника один четырехугольникпроведём прямую и обозначим точку пересечения со стороной Решение четыре треугольника один четырехугольникчерез Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

Координаты середины отрезка

Исследование: Начертите числовую ось. Постройте окружность с центром в точке Решение четыре треугольника один четырехугольникрадиусом 3 единицы. Вычислите значение выражения Решение четыре треугольника один четырехугольникЕсть ли связь между значением данного выражения и координатой точки Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

Координаты середины отрезка

1) Пусть на числовой оси заданы точки Решение четыре треугольника один четырехугольники Решение четыре треугольника один четырехугольники точка Решение четыре треугольника один четырехугольниккоторая является серединой отрезка Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольникто Решение четыре треугольника один четырехугольника отсюда следует, что Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

2) По теореме Фалеса, если точка Решение четыре треугольника один четырехугольникявляется серединой отрезка Решение четыре треугольника один четырехугольникто на оси абсцисс точка Решение четыре треугольника один четырехугольникявляется соответственно координатой середины отрезка концы которого находятся в точках Решение четыре треугольника один четырехугольники Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

3) Координаты середины отрезка Решение четыре треугольника один четырехугольникс концами Решение четыре треугольника один четырехугольники Решение четыре треугольника один четырехугольникточки Решение четыре треугольника один четырехугольникнаходятся так:

Решение четыре треугольника один четырехугольник

Убедитесь, что данная формула верна в случае, если отрезок Решение четыре треугольника один четырехугольникпараллелен одной из осей координат.

Теорема Пифагора

В этом разделе вы научитесь:

  • различать рациональные и иррациональные числа;
  • упрощать выражения, содержащие квадратные корни;
  • решать задания на извлечение квадратного корня;
  • основам теоремы Пифагора;
  • решать практические задачи, применяя теорему Пифагора.

При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.

Теорема Пифагора очень часто используется при решении геометрических задач.

Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.

Практическая работа:

Шаг 1. Вырежьте из картона два одинаковых квадрата.

Шаг 2. На стороне одного из них отметьте отрезки Решение четыре треугольника один четырехугольниккак показано на рисунке и разрежьте его на два квадрата и два прямоугольника.

Решение четыре треугольника один четырехугольник

Шаг 3. Полученные фигуры расположите, как показано на рисунке.

Решение четыре треугольника один четырехугольник

Шаг 4. На сторонах другого квадрата отметьте отрезки Решение четыре треугольника один четырехугольниккак показано на рисунке и отрежьте четыре прямоугольных треугольника.

Решение четыре треугольника один четырехугольник

Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?

Шаг 6. Расположите полученные фигуры, как показано на рисунке.

Решение четыре треугольника один четырехугольник

Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Решение четыре треугольника один четырехугольник

Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах: Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.

Пример:

Найдём длину катета на рисунке:

Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.

Обратная теорема:

Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если Решение четыре треугольника один четырехугольникто, Решение четыре треугольника один четырехугольник— прямоугольный.

Решение четыре треугольника один четырехугольник

Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25. также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа Решение четыре треугольника один четырехугольникявляются Пифагоровыми тройками, то и числа Решение четыре треугольника один четырехугольниктакже являются Пифагоровыми тройками.

Видео:9 класс, 15 урок, Решение треугольниковСкачать

9 класс, 15 урок, Решение треугольников

Справочный материал по четырёхугольнику

Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.

Решение четыре треугольника один четырехугольник(рис. 1).

Точки А, В, С, D — вершины четырёхугольника, отрезки АВ, ВС, CD, DA — его стороны. Углы DAB, ABC, BCD, CDA — это углы четырёхугольника. Их также обозначают одной буквой — Решение четыре треугольника один четырехугольникРешение четыре треугольника один четырехугольник

Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?

У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой. Решение четыре треугольника один четырехугольник

Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA — неверна.

Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ — соседние, а вершины А и С, Решение четыре треугольника один четырехугольник, стороны AD и ВС — противоположные.

Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD — диагонали четырёхугольника ABCD.

Четырёхугольники бывают выпуклыми и невыпуклыми.

Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б — невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.

Решение четыре треугольника один четырехугольник

Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.

Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: Решение четыре треугольника один четырехугольник=40 cm

Пример:

Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.

Решение:

Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В Решение четыре треугольника один четырехугольник+ CD (по неравенству треугольника). Тогда Решение четыре треугольника один четырехугольник. Аналогично АВ 45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) Решение четыре треугольника один четырехугольник. Углы А и С параллелограмма равны как суммы равных углов.

Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.

Пример №1

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.

Решение четыре треугольника один четырехугольник

Решение:

Решение четыре треугольника один четырехугольник(рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично Решение четыре треугольника один четырехугольник(АВ CD, ВС-секущая), Решение четыре треугольника один четырехугольник(ВС || AD, CD — секущая), Решение четыре треугольника один четырехугольник(АВ || CD, AD- секущая).

Теорема (свойство диагоналей параллелограмма).

Диагонали параллелограмма точкой их пересечения делятся пополам.

Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.

Решение четыре треугольника один четырехугольник

Доказательство. Решение четыре треугольника один четырехугольникпо стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, Решение четыре треугольника один четырехугольниккак внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.

Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).

Свойства параллелограмма приведены в таблице 3.Решение четыре треугольника один четырехугольник

1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).

2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.

Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).

Признаки параллелограмма

Решaя задачи, иногда требуется установить, что данный четырёхугольник — параллелограмм. Для этого используют признаки параллелограмма.

Теорема (признак параллелограмма).

Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник — параллелограмм.

Решение четыре треугольника один четырехугольник

Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.

Доказать: ABCD— параллелограмм.

Доказательство. Проведём диагональ BD (рис. 52). Решение четыре треугольника один четырехугольникпо трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Решение четыре треугольника один четырехугольник Решение четыре треугольника один четырехугольникУглы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.

Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие — параллельны?

Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD — не параллелограмм. Решение четыре треугольника один четырехугольник

Теорема (признак параллелограмма).

Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник — параллелограмм.

Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.

Решение четыре треугольника один четырехугольник

Доказать: ABCD — параллелограмм.

Доказательство. Проведём диагональ АС (рис. 54). Решение четыре треугольника один четырехугольникпо двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, Решение четыре треугольника один четырехугольниккак внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Решение четыре треугольника один четырехугольникНо углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.

Пример №2 (признак параллелограмма).

Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.

Решение четыре треугольника один четырехугольник

Решение:

Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. Решение четыре треугольника один четырехугольникпо двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, Решение четыре треугольника один четырехугольниккак вертикальные. Из равенства треугольников следует: ВС= AD и Решение четыре треугольника один четырехугольникНо углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.

Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник — параллелограмм.

Чтобы установить, что четырёхугольник — параллелограмм, докажите, что в нём:

  1. либо противоположные стороны попарно параллельны (определение параллелограмма),
  2. либо противоположные стороны попарно равны (признак),
  3. либо две противоположные стороны равны и параллельны (признак),
  4. либо диагонали делятся точкой их пересечения пополам (признак).

Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.

Решение четыре треугольника один четырехугольник

Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.

Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.

Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».

Прямоугольник

Параллелограммы, как и —у треугольники, можно разделить на виды. Прямоугольник — один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике. Решение четыре треугольника один четырехугольник

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Поскольку прямоугольник — частный вид параллелограмма, то ему присущи все свойства параллелограмма:

  1. противоположные стороны равны;
  2. противоположные углы равны;
  3. диагонали делятся точкой их пересечения пополам.

Кроме этих свойств прямоугольник имеет ещё и особое свойство.

Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).

Решение четыре треугольника один четырехугольник

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.

Свойства прямоугольника приведены в таблице 8.

Решение четыре треугольника один четырехугольникМожно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.

Пример №3 (признак прямоугольника).

Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.

Решение:

Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что Решение четыре треугольника один четырехугольник. Решение четыре треугольника один четырехугольникпо трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что Решение четыре треугольника один четырехугольник. Поскольку в параллелограмме противоположные углы равны, то: Решение четыре треугольника один четырехугольник. По свойству углов четырёхугольника, Решение четыре треугольника один четырехугольник

Следовательно, Решение четыре треугольника один четырехугольник: 4 = 90°, то есть параллелограмм ABCD — прямоугольник.

Для того чтобы установить, что данный параллелограмм — прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).

Можно ли утверждать, что четырёхугольник, в котором диагонали равны, — это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.

Решение четыре треугольника один четырехугольник

Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?

В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.

Следовательно, существуют разные определения одного и того же понятия.

Ромб. Квадрат

Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма — ромб.

Решение четыре треугольника один четырехугольник

Параллелограмм, у которого все стороны равны, называется ромбом.

Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.

Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.

Решение четыре треугольника один четырехугольник

Дано: ABCD — ромб (рис. 95), О— точка пересечения диагоналей АС и BD.

Доказать: Решение четыре треугольника один четырехугольник

Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому Решение четыре треугольника один четырехугольник. Решение четыре треугольника один четырехугольник

Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.

Свойства ромба приведены в таблице 10. Таблица 1 О

Решение четыре треугольника один четырехугольник

Пример №4 (признак ромба)

Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.

Решение:

Пусть ABCD — данный параллелограмм, в котором Решение четыре треугольника один четырехугольник(рис. 96). Докажем, что ABCD— ромб. Решение четыре треугольника один четырехугольникпо двум сторонами и углу между ними.

Решение четыре треугольника один четырехугольник

Так как ромб — это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, Решение четыре треугольника один четырехугольникпо условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.

Для того чтобы установить, что данный параллелограмм — ромб, докажите, что в нем:

  • либо все стороны равны (определение ромба),
  • либо диагонали взаимно перпендикулярны (признак).

Прямоугольник, в котором все стороны равны, называется квадратом.

На рисунке 97 вы видите квадрат ABCD.

Решение четыре треугольника один четырехугольник

Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.

  1. Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
  2. Диагонали квадрата равны (свойство прямоугольника).
  3. Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).

Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник — это частные виды параллелограмма. Соотношение между видами параллелограммов показано на Решение четыре треугольника один четырехугольник

1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.

Решение четыре треугольника один четырехугольник

2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.

Решение четыре треугольника один четырехугольник

Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.

3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.

Теорема Фалеса. Средняя линия треугольника

Начертите угол ABC (рис. 117).

Решение четыре треугольника один четырехугольник

Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки Решение четыре треугольника один четырехугольники Решение четыре треугольника один четырехугольникПроведите с помощью чертёжного угольника и линейки через точки Решение четыре треугольника один четырехугольникпараллельные прямые, которые пересекут сторону ВС этого угла в точках Решение четыре треугольника один четырехугольникПри помощи циркуля сравните длины отрезков Решение четыре треугольника один четырехугольникСделайте вывод.

Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Дано: Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

Доказать: Решение четыре треугольника один четырехугольник

Доказательство. Проведём через точки Решение четыре треугольника один четырехугольникпрямые Решение четыре треугольника один четырехугольникпараллельные ВС. Решение четыре треугольника один четырехугольникпо стороне и прилежащим к ней углам. У них Решение четыре треугольника один четырехугольникпо условию, Решение четыре треугольника один четырехугольниккак соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что Решение четыре треугольника один четырехугольники Решение четыре треугольника один четырехугольниккак противоположные стороны параллелограммов Решение четыре треугольника один четырехугольник

Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).

Решение четыре треугольника один четырехугольник

Пример №5

Разделите данный отрезок АВ на пять равных частей.

Решение:

Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).

Решение четыре треугольника один четырехугольник

Отложим на луче АС пять равных отрезков: АА,Решение четыре треугольника один четырехугольникПроведём прямую Решение четыре треугольника один четырехугольник. Через точки Решение четыре треугольника один четырехугольникпроведём прямые, параллельные прямой Решение четыре треугольника один четырехугольник. По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 121 отрезок MN — средняя линия Решение четыре треугольника один четырехугольник, так как точки М и N — середины сторон АВ и ВС.

Решение четыре треугольника один четырехугольник

Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.

Дано: Решение четыре треугольника один четырехугольник(рис. 122), AD = BD, СЕ= BE.

Решение четыре треугольника один четырехугольник

Доказать: Решение четыре треугольника один четырехугольник

Доказательство. 1) Пусть DE- средняя линия Решение четыре треугольника один четырехугольник. Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.

2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1

АС пополам: Решение четыре треугольника один четырехугольник. По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно, Решение четыре треугольника один четырехугольник

Пример №6

Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.

Решение:

Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.

Решение четыре треугольника один четырехугольник

Поэтому Решение четыре треугольника один четырехугольник. КР— средняя линия треугольника ADC. Поэтому КР || АС и Решение четыре треугольника один четырехугольник

Получаем: MN || АС и КР || АС, отсюда MN || КРРешение четыре треугольника один четырехугольник, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.

Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.

Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.

Решение четыре треугольника один четырехугольник

Трапеция

Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами — параллелограмм.

На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие — АВ и CD — непараллельны. Такой четырёхугольник — трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.

Решение четыре треугольника один четырехугольник

Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие — непараллельны.

Решение четыре треугольника один четырехугольник

Параллельные стороны трапеции называются её основаниями, а непараллельные — боковыми сторонами. На рисунке 144 AD и ВС — основания трапеции, АВ и CD — боковые стороны.

Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.

Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).

Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP — равнобедренная, поскольку MN = КР.

Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) — прямоугольная, поскольку Решение четыре треугольника один четырехугольник= 90*.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

На рисунке 147 отрезок EF — средняя линия трапеции ABCD, так как точки Е и F — середины боковых сторон АВ и CD.

Решение четыре треугольника один четырехугольник

Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD — трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать: Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. Решение четыре треугольника один четырехугольникno стороне и прилежащим к ней углам. У них CF = FD по условию, Решение четыре треугольника один четырехугольниккак вертикальные, Решение четыре треугольника один четырехугольниквнутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.

1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.

Пример №7 (свойство равнобедренной трапеции).

В равнобедренной трапеции углы при основании равны. Докажите это.

Решение:

Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.

Решение четыре треугольника один четырехугольник

Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и Решение четыре треугольника один четырехугольникравнобедренный. Поэтому Решение четыре треугольника один четырехугольниксоответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда

Решение четыре треугольника один четырехугольник

Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.

Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами

Решение четыре треугольника один четырехугольник

Центральные и вписанные углы

Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.

Угол с вершиной в центре окружности называется центральным углом. Решение четыре треугольника один четырехугольникРешение четыре треугольника один четырехугольник

Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.

Дано: Решение четыре треугольника один четырехугольник— вписанный в окружность с центром О (рис. 188 — 190).

Доказать: Решение четыре треугольника один четырехугольник

Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.

1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом Решение четыре треугольника один четырехугольник. По свойству внешнего угла треугольника, Решение четыре треугольника один четырехугольникРешение четыре треугольника один четырехугольник— равнобедренный (ОВ= OA = R). Поэтому Решение четыре треугольника один четырехугольникизмеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.

2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:Решение четыре треугольника один четырехугольник

Из доказанного в первом случае следует, что Решение четыре треугольника один четырехугольникизмеряется половиной дуги AD, a Решение четыре треугольника один четырехугольник— половиной дуги DC. Поэтому Решение четыре треугольника один четырехугольникизмеряется суммой полудуг AD и DC, то J есть половиной дуги АС.

3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда: Решение четыре треугольника один четырехугольник

Решение четыре треугольника один четырехугольник

Следствие 1.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.

Следствие 2.

Вписанный угол, опирающийся на диаметр, — прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°. Решение четыре треугольника один четырехугольник

Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.

Пример №8

Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.

Решение:

Проведём диаметр CD и соединим точки A и D (рис. 194). Решение четыре треугольника один четырехугольниккак вписанные, опирающиеся на дугу АС (следствие 1). Поэтому Решение четыре треугольника один четырехугольник, так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно, Решение четыре треугольника один четырехугольник

Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.

Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.

Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, Решение четыре треугольника один четырехугольник(рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.

Если описать окружность около Решение четыре треугольника один четырехугольник(рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо: Решение четыре треугольника один четырехугольник

Вписанные и описанные четырёхугольники

Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность. Решение четыре треугольника один четырехугольник

Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность — описанной около этого четырехугольника.

Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.

Решение четыре треугольника один четырехугольник

Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот четырёхугольник.

Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.

Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.

Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).

Решение четыре треугольника один четырехугольник

Доказать: Решение четыре треугольника один четырехугольник

Доказательство. Углы А, В, Си D вписаны в окружность.

Из теоремы о вписанном угле следует: Решение четыре треугольника один четырехугольник

Тогда Решение четыре треугольника один четырехугольник

Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда Решение четыре треугольника один четырехугольник

Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник — вписанный. Приведём признак вписанного четырёхугольника без доказательства.

Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.

Пример №9

Докажите, что около равнобедренной трапеции можно описать окружность.

Решение:

Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225). Решение четыре треугольника один четырехугольник

Докажем, что Решение четыре треугольника один четырехугольник. В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).

Поэтому, Решение четыре треугольника один четырехугольник. По свойству равнобокой трапеции, Решение четыре треугольника один четырехугольник

Тогда Решение четыре треугольника один четырехугольники, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.

Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.

Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.

Решение четыре треугольника один четырехугольник

Доказать: АВ + CD = ВС + AD.

Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.

В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.

Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ے M + ے K = 180°, либо ے N + ے P= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.

1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.

Решение четыре треугольника один четырехугольник

Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения Решение четыре треугольника один четырехугольникцентры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника Решение четыре треугольника один четырехугольниквписанного в окружность. Действительно,

Решение четыре треугольника один четырехугольник

Следовательно, четырёхугольник Решение четыре треугольника один четырехугольник— вписанный в окружность.

2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.

Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.

Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).

Решение четыре треугольника один четырехугольник

Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD — вписанный, так как ے ABC + ے ADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.

4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.

Решение четыре треугольника один четырехугольник

Пример №10

Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ے MAD= ے MCD.

Решение:

Около четырёхугольника ADMC можно описать окружность, так как ے ACM+ ے ADM= 180°.

Тогда ے MAD= ے MCD— вписанные углы, опирающиеся на одну дугу MD.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Решение четыре треугольника один четырехугольник

Задание 16. В четырёхугольнике ABCD противоположные стороны не параллельны. Диагонали четырёхугольника ABCD пересекаются в точке O под прямым углом и образуют четыре подобных треугольника, у каждого из которых одна из вершин — точка О.

а) Докажите, что около четырёхугольника ABCD можно описать окружность.

б) Найдите радиус вписанной окружности, если АС = 10, BD = 26.

а)В четырехугольнике ABCD диагонали AC и BD взаимно перпендикулярны, следовательно,

Решение четыре треугольника один четырехугольник

Пусть Решение четыре треугольника один четырехугольник(так как треугольники ABO и CBO подобны по условию задания). Также Решение четыре треугольника один четырехугольники Решение четыре треугольника один четырехугольникиз подобия треугольников CBO и DCO. Причем должно выполняться условие: Решение четыре треугольника один четырехугольник. Наконец, из подобия треугольников DCO и DAO следует, что Решение четыре треугольника один четырехугольник. Имеем:

Решение четыре треугольника один четырехугольник

Из последних двух равенств следует, что вокруг четырехугольника ABCD можно описать окружность.

Решение четыре треугольника один четырехугольник

б)Рассмотрим равнобедренный треугольник ABC с биссектрисой BO, следовательно, она же является и высотой и медианой, поэтому AO=OC=5. Учитывая, что

Решение четыре треугольника один четырехугольник

треугольник BCD – прямоугольный с высотой CO. Пусть BO = x, тогда OD = 26-x и

Решение четыре треугольника один четырехугольник

Решаем квадратное уравнение, получаем два корня:

Решение четыре треугольника один четырехугольник

Следовательно, BO = 1, OD = 25 или, наоборот, BO = 25, OD = 1. Предположим, что BO = 1, OD = 25, тогда:

Решение четыре треугольника один четырехугольник

Для второго варианта: Решение четыре треугольника один четырехугольник. Так как AB = BC, AD = CD, то периметр четырехугольника ABCD, равен:

Решение четыре треугольника один четырехугольник

Площадь четырехугольника ABCD:

Решение четыре треугольника один четырехугольник

И также ее можно определить по формуле:

Решение четыре треугольника один четырехугольник

Ответ:Решение четыре треугольника один четырехугольник

🎬 Видео

Миникурс по геометрии. ЧетырехугольникиСкачать

Миникурс по геометрии. Четырехугольники

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Задача, которая поставила маму первоклассника в тупикСкачать

Задача, которая поставила маму первоклассника в тупик

ГЕОМЕТРИЯ 8 класс: Четырехугольники | Видеоурок с теорией и решением задачиСкачать

ГЕОМЕТРИЯ 8 класс: Четырехугольники | Видеоурок с теорией и решением задачи

Замечательные точки треуг-ка. 8 класс.Скачать

Замечательные точки треуг-ка. 8 класс.

8 класс, 25 урок, Средняя линия треугольникаСкачать

8 класс, 25 урок, Средняя линия треугольника

Четырехугольники. Вебинар | МатематикаСкачать

Четырехугольники. Вебинар | Математика

3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Задача с канала PreMath — попробуй найти площадь четырехугольникаСкачать

Задача с канала PreMath — попробуй найти площадь четырехугольника

Найдите площадь треугольника изображенного на клетчатой бумаге с размером клетки 1х1 см.Скачать

Найдите площадь треугольника изображенного на клетчатой бумаге с размером клетки 1х1 см.

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

Задача, которую боятсяСкачать

Задача, которую боятся

Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Выразить векторы. Разложить векторы. Задачи по рисункам. ГеометрияСкачать

Выразить векторы. Разложить векторы. Задачи по рисункам. Геометрия
Поделиться или сохранить к себе: