Равноускоренное движение по окружности

Формулы равноускоренного движения по прямой и по окружности. Пример решения задачи

Равноускоренное движение по окружности

В физике, в разделах кинематики и динамики, изучают различные типы механического движения по разным видам траекторий. Данная статья посвящена рассмотрению графиков и формул равноускоренного движения тел по прямой траектории и по окружности.

Содержание
  1. Понятие об ускорении
  2. Движение равноускоренное прямолинейное
  3. Перемещение при равноускоренном движении прямолинейном
  4. Равноускоренное движение по окружности
  5. Задача со свободным падением
  6. Виды движения по окружности
  7. Движение по окружности с постоянной по модулю скоростью
  8. Тангенциальное ускорение – когда модуль скорости меняется
  9. Равноускоренное движение по окружности
  10. Равнозамедленное движение по окружности
  11. Общее ускорение при движении по окружности
  12. Движение по окружности: формулы и расчеты
  13. Перемещение по окружности и по прямой линии в физике
  14. Угловые характеристики движения: угол поворота
  15. Угловая скорость и ускорение
  16. Равномерное движение
  17. Равноускоренное движение по окружности
  18. Связь между угловыми и линейными величинами
  19. Ускорение центростремительное
  20. Задача на определение угловой скорости вращения планеты

Видео:Физика - движение по окружностиСкачать

Физика - движение по окружности

Понятие об ускорении

Равноускоренное движение по окружности

Прежде чем мы перейдем к анализу формул равноускоренного движения, следует дать определение самому ускорению. Под ним в физике полагают векторную величину, которая описывается изменение скорости во времени. Математическая формулировка этого определения выглядит так:

Например, изменение скорости на 1 м/с за одну секунду характеризуется ускорением 1 м/с 2 .

Записанное выражение позволяет вычислить так называемую мгновенную скорость. На практике же часто необходимо знать не значение a¯ в данный момент времени, а некоторую среднюю величину acp¯ за определенный промежуток времени. В таком случае применяют следующую формулу:

Здесь Δv¯ — вектор изменения скорости за время Δt.

Отметим, что вектор ускорения всегда направлен в сторону изменения скорости, поэтому напрямую от вектора скорости он не зависит. В свою очередь, скорость направлена всегда по касательной к траектории в данной точке.

Видео:Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорениеСкачать

Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорение

Движение равноускоренное прямолинейное

Данный вид движения часто появляется в физических задачах. На практике он также реализуется, например, при разгоне автомобиля с места, при свободном падении тяжелого тела или во время торможения транспортного средства. Во всех этих случаях речь идет о перемещении объектов с постоянным ускорением. Именно поэтому само движение называется равноускоренным (a = const).

Равноускоренное движение по окружности

Скорость и ускорение равноускоренного движения связаны следующим выражением:

Здесь v0 — скорость, которую тело имело до появления ускорения a. При начале движения с ускорением из состояния относительного покоя значение v0 можно опустить. Тогда получим:

Как видно, графиками равноускоренного движения для функции v(t) будут прямые, которые начинаются либо из точки (0; v0), либо из точки (0; 0). Угол между осью абсцисс и прямой равен арктангенсу от значения ускорения.

В случае наличия начальной скорости v0, ускорение a может быть отрицательным, что на практике соответствует торможению тела. Графиком v(t) при этом будет также прямая линия, но она будет стремиться к нулевому значению скорости. Соответствующая формула принимает вид:

Поскольку ускорение равноускоренного движения от времени не зависит, то графиком функции a(t) будет прямая, параллельная оси времени t.

Видео:Криволинейное, равномерное движение материальной точки по окружности. 9 класс.Скачать

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.

Перемещение при равноускоренном движении прямолинейном

Выше были приведены три формулы равноускоренного движения по прямой, которые связывают скорость и время (ускорение — постоянная величина). Чтобы рассчитать путь, который тело пройдет за время t при таком типе перемещения, следует проинтегрировать записанные выражения по времени. В результате операции интегрирования мы получим следующие три формулы для пути S:

Все три выражения показывают, что для пути графики равноускоренного движения являются параболами, вернее, правой ее веткой. Для формул 1) и 2) речь идет о возрастающей ветви параболы, поскольку вектор ускорения совпадает с вектором скорости. Для третьего выражения правая ветвь параболы стремится к некоторому постоянному положительному значению S0, соответствующему пути, который тело пройдет до того, как полностью остановится.

Равноускоренное движение по окружности

Видео:Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | ИнфоурокСкачать

Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | Инфоурок

Равноускоренное движение по окружности

Этот тип движения во многом отличается от прямолинейного. Во-первых, при ускоренном вращении скорость изменяет свой модуль и свой вектор, что приводит к появлению двух компонент ускорения: касательного и центростремительного. Во-вторых, при вращении нет никакого смысла оценивать, какое расстояние прошло тело, ведь оно движется под одной и той же окружности.

В связи со сказанным для описания движения по окружности пользуются угловыми скоростями и ускорениями. Угловое ускорение показывает, как быстро изменяется угловая скорость в радианах в секунду. С линейным ускорением a угловое α связано следующим выражением:

Где r — радиус траектории вращения.

Для равноускоренного движения по круглой траектории справедливы следующие кинематические формулы:

Здесь θ — угол поворота в радианах за время t. Его можно использовать для вычисления линейного расстояния L, которое тело пройдет вдоль окружности:

Видео:Физика | Равномерное движение по окружностиСкачать

Физика | Равномерное движение по окружности

Задача со свободным падением

Рассмотрев все важные формулы равноускоренного движения, решим такую задачу: тело брошено вертикально вверх с начальной скоростью 35 м/с. Необходимо определить, на какую высоту оно сможет подняться и через какое время оно упадет на землю. Силами трения можно пренебречь.

Равноускоренное движение по окружности

Во время подъема на тело действует ускорение свободного падения g, направленное против скорости, то есть время подъема будет равно:

Пренебрегая силами трения, можно с уверенностью сказать, что время подъема будет равно времени падения, поэтому полное время движения тела равно:

Высоту подъема h можно вычислить по такой формуле:

Таким образом, тело после броска вверх достигнет высоты 62,4 метра, и упадет на поверхность земли через 7,1 секунду после начала движения.

Видео:Равноускоренное движение по окружностиСкачать

Равноускоренное движение по окружности

Виды движения по окружности

Угловое движение можно условно разделить на два вида:

  1. Когда изменяется только направление вектора линейной скорости, а его длина не изменяется.
  2. Или, когда изменяются обе характеристики вектора линейной скорости.

Во втором случае, для описания движения будем применять более сложные формулы кинематики. Так как появится еще один вид ускорения.

Центростремительное (нормальное) ускорение есть всегда, когда есть движение по окружности, при этом не важно, меняется ли скорость тела по модулю, или не меняется.

Видео:Физика 10 класс (Урок№4 - Равномерное движение точки по окружности.)Скачать

Физика 10 класс (Урок№4 - Равномерное движение точки по окружности.)

Движение по окружности с постоянной по модулю скоростью

Пусть тело движется по окружности, но при этом длина вектора линейной скорости не меняется (рис. 1).

[left|vec right| = const]

Равноускоренное движение по окружности

На рисунке 1 указаны: а) – вид сбоку, б) вид сверху, вектор угловой скорости направлен к нам перпендикулярно рисунку.

Скорость будет меняться только по направлению от точки к точке, потому, что на тело действует центростремительная сила (displaystyle vec<F_<text>>) , тело обладает центростремительным (displaystyle vec<a_<text>>) (нормальным) ускорением.

Кроме линейной, тело обладает угловой скоростью. Если линейная скорость не изменяется по модулю, то длина вектора угловой скорости не меняется.

На рисунке 1а изображен вектор угловой скорости (displaystyle vec), на рисунке 1б вектор угловой скорости направлен к нам перпендикулярно плоскости рисунка. Направление, в котором тело движется по окружности, указано синей стрелкой.

Видео:Урок 47. Неравномерное движение по окружности. Тангенциальное ускорениеСкачать

Урок 47. Неравномерное движение по окружности. Тангенциальное ускорение

Тангенциальное ускорение – когда модуль скорости меняется

Тело может увеличивать или уменьшать свою скорость, когда движется по окружности.

В таком случае, дополнительно к нормальному ускорению возникает тангенциальное (displaystyle vec<a_>) ускорение.

Тангенциальное ускорение играет роль линейного ускорения при прямолинейном движении тела. Вектор (displaystyle vec<a_>) направлен параллельно вектору (displaystyle vec) скорости.

Подобно движению по прямой, вектор ускорения – это первая производная скорости по времени, или вторая производная перемещения по времени.

Когда векторы скорости (vec) и ускорения (vec<a_>) сонаправлены (рис. 2), линейная и угловая скорости возрастают.

Равноускоренное движение по окружности

А когда ускорение (vec<a_>) направлено противоположно (рис. 3) вектору скорости (vec), угловая и линейная скорости уменьшаются.

Равноускоренное движение по окружности

С линейной скоростью (vec) связана угловая (vec) скорость.

Из рисунков 2, 3 следует: когда появляется тангенциальное ускорение, меняется и угловая скорость. Значит, тангенциальное ускорение (vec<a_>) появляется совместно с угловым (vec) ускорением и между ними есть связь.

Связь между тангенциальным и угловым ускорением выглядит аналогично связи между линейной и угловой скоростью.

В векторном виде

В скалярном виде

[ large boxed < a_= beta cdot R >]

(displaystyle vec left( frac<text><c^>right)) – угловое ускорение;

(displaystyle vec< a_> left( frac<text><c^>right)) – тангенциальное ускорение;

(R left( textright)) – радиус окружности.

Видео:Равномерное движение точки по окружности | Физика 10 класс #7 | ИнфоурокСкачать

Равномерное движение точки по окружности | Физика 10 класс #7 | Инфоурок

Равноускоренное движение по окружности

Угловая скорость увеличивается (рис. 2), когда угловое ускорение сонаправлено с вектором угловой скорости. Когда движение происходит с постоянным ускорением, его называют равноускоренным.

Для решения задач на равноускоренное движение по окружности, поступаем аналогично равноускоренному движению по прямой. Применяем систему из двух уравнений:

[ large boxed < beginomega = omega _ + beta cdot t \ displaystyle varphi = omega_ cdot t + beta cdot frac end > ]

Первое уравнение системы – это связь между начальной (omega_ ) и конечной (omega ) скоростью. Второе уравнение – это уравнение движения.

Видео:Равноускоренное движение по окружности. Видеоурок 51. Физика 10 классСкачать

Равноускоренное движение по окружности. Видеоурок 51. Физика 10 класс

Равнозамедленное движение по окружности

Когда векторы (vec) и (vec) направлены в противоположные стороны, угловая скорость (vec) уменьшается (рис. 3).

Для решения задач кинематики, в которых угловая скорость уменьшается и, движение равнозамедленное, используем систему, состоящую из таких уравнений:

[ large boxed < beginomega = omega _ — beta cdot t \ displaystyle varphi = omega_ cdot t — beta cdot frac end > ]

Видео:Урок 89. Движение по окружности (ч.1)Скачать

Урок 89. Движение по окружности (ч.1)

Общее ускорение при движении по окружности

Пусть точка движется по окружности и линейная (vec) скорость ее изменяется по модулю. При этом, точка обладает двумя видами ускорения — нормальным и тангенциальным. Эти виды ускорения обозначают символом (vec).

Примечание: Любое ускорение, обозначаемое символом «a», измеряется в метрах, деленных на секунду в квадрате.

Равноускоренное движение по окружности

Направление вектора общего ускорения указано на рисунке 4а, а для равнозамедленного – на рисунке 4б.

Так как векторы (vec<a_>) и (vec<a_>) всегда перпендикулярны, длину вектора общего ускорения (vec) можно найти из теоремы Пифагора:

Видео:Кинематика. Движение по окружности. Урок 4Скачать

Кинематика. Движение по окружности. Урок 4

Движение по окружности: формулы и расчеты

Перемещение тел по окружности достаточно распространено в нашей жизни и в природе. Яркими примерами этого типа перемещения являются вращения ветровых мельниц, планет вокруг своих звезд и колес транспортных средств. В данной статье рассмотрим, какими формулами движение по окружности тел описывается.

Видео:КРИВОЛИНЕЙНОЕ ДВИЖЕНИЕ - Угловое Перемещение, Угловая Скорость, Центростремительное УскорениеСкачать

КРИВОЛИНЕЙНОЕ ДВИЖЕНИЕ - Угловое Перемещение, Угловая Скорость, Центростремительное Ускорение

Перемещение по окружности и по прямой линии в физике

Равноускоренное движение по окружности

В физике вопросами движения занимается кинематика. Она устанавливает связь между величинами, описывающими этот процесс. В динамике также уделяется внимание движению, однако она ориентирована на описание причин его возникновения. Другими словами, если для кинематики главными физическими величинами являются путь и скорость, то для динамики — это действующие на тела силы.

Равноускоренное движение по окружности Вам будет интересно: Интерес: определение, понятие, типы и функции

В физике принято выделять два идеальных типа траекторий движения:

Математический аппарат для описания движения по обоим типам траекторий развит настолько хорошо, что понимание формул, например для прямолинейного движения, автоматически приводит к пониманию выражений для движения по окружности. Единственная принципиальная разница между формулами указанных типов перемещения заключается в том, что для движения по окружности удобно использовать угловые характеристики, а не линейные.

Равноускоренное движение по окружности Вам будет интересно: Педагогическая система Макаренко: принципы и компоненты

Далее в статье будем рассматривать исключительно кинематические формулы движения по окружности тел, не вдаваясь в подробности динамики.

Видео:УСКОРЕНИЕ - Что такое равноускоренное движение? Как найти ускорение // Урок Физики 9 классСкачать

УСКОРЕНИЕ - Что такое равноускоренное движение? Как найти ускорение // Урок Физики 9 класс

Угловые характеристики движения: угол поворота

Равноускоренное движение по окружности

Прежде чем записывать формулы движения по окружности в физике, следует ввести величины, которые будут фигурировать в этих формулах.

Начнем с угла поворота. Будем обозначать его греческой буквой θ (тета). Поскольку вращение предполагает движение точки вдоль одной и той же окружности, то значение угла поворота θ за определенный промежуток времени можно использовать для определения количества оборотов, которое сделала эта точка. Напомним, что вся окружность равна 2*pi радиан, или 360o. Тогда формула для числа оборотов n через угол θ примет вид:

Равноускоренное движение по окружности Вам будет интересно: Академик Рыбаков Б.А.: биография, археологическая деятельность, книги

Здесь и далее во всех формулах угол выражается в радианах.

Пользуясь известным углом θ, также можно определить линейное расстояние, которое точка прошла вдоль окружности. Это расстояние будет равно:

Здесь r — радиус рассматриваемой окружности.

Видео:Кинематика за 8 минСкачать

Кинематика за 8 мин

Угловая скорость и ускорение

Равноускоренное движение по окружности

Кинематические формулы движения по окружности точки предполагают также использование понятий угловой скорости и углового ускорения. Обозначим первую буквой ω (омега), а вторую буквой α (альфа).

Физический смысл угловой скорости ω прост: эта величина показывает, на какой угол в радианах поворачивается точка за каждую секунду времени. Данное определение имеет следующее математическое представление:

Эта формула скорости движения по окружности записана в дифференциальной форме. Полученная с ее помощью величина ω называется мгновенной скоростью. Ее удобно использовать, если движение не является равномерным, то есть происходит с переменной скоростью.

Угловое ускорение α — это величина, которая описывает быстроту изменения скорости ω, то есть:

Угловое ускорение измеряется в радианах в секунду квадратную (рад/с2). Так, 1 рад/с2 означает, что тело увеличивает за каждую секунду времени скорость на 1 рад/с.

Учитывая выражение для ω, записанное выше, равенство можно представить в такой форме:

В зависимости от особенностей движения по окружности величина α может быть постоянной, переменной или нулевой.

Видео:О терминах равноускоренное и равнозамедленное движениеСкачать

О терминах равноускоренное и равнозамедленное движение

Равномерное движение

Равноускоренное движение по окружности

Когда на вращающееся тело не действует никакая внешняя сила, то угловая скорость будет оставаться постоянной сколь угодно длительное время. Такое движение получило название равномерного вращения. Оно описывается следующей формулой:

В этом выражении переменными являются всего две величины: t и θ. Скорость ω = const.

Следует отметить один важный момент: нулю равна лишь равнодействующая внешних сил на тело, внутренние же силы, действующие в системе, нулю не равны. Так, внутренняя сила заставляет вращающееся тело изменять свою прямолинейную траекторию на криволинейную (окружность). Эта сила приводит к появлению центростремительного ускорения. Последнее не изменяет ни скорость ω, ни линейную скорость v, оно лишь изменяет направление движения.

Видео:Центростремительное ускорение. 9 класс.Скачать

Центростремительное ускорение. 9 класс.

Равноускоренное движение по окружности

Формулы для этого типа перемещения можно получить непосредственно из приведенных математических выражений для величин ω и α. Равноускоренное движение предполагает, что за более-менее длительный промежуток времени модуль и направление ускорения α не изменяются. Благодаря этому можно проинтегрировать дифференциальное выражение для α и получить следующие две формулы:

Очевидно, что в первом случае движение будет равноускоренным, во втором — равнозамедленным. Величина ω0 здесь — это некоторая начальная скорость, которой вращающееся тело обладало до появления ускорения.

Для равноускоренного движения не существует конечной скорости, поскольку она может возрастать сколь угодно долго. Для равнозамедленного движения конечным состоянием будет прекращение вращения, то есть ω = 0.

Теперь запишем формулы для определения угла θ при движении с постоянным ускорением. Эти формулы получаются, если произвести двойное интегрирование по времени для выражения α через θ. Получаются следующие выражения:

То есть центральный угол θ, на который тело повернется за время t, будет равен сумме двух слагаемых. Первое слагаемое — это вклад в θ равномерного движения, второе — равноускоренного (равнозамедленного).

Видео:ЕГЭ по физике. Теория #9. Равномерное движение по окружностиСкачать

ЕГЭ по физике. Теория #9.  Равномерное движение по окружности

Связь между угловыми и линейными величинами

Равноускоренное движение по окружности

При рассмотрении понятия угла поворота θ уже была приведена формула, которая его связывает с линейным расстоянием L. Здесь же рассмотрим аналогичные выражения для скорости ω и ускорения α.

Линейная скорость v при равномерном движении определяется как расстояние L, пройденное за время t, то есть:

Подставляя сюда выражение для L через θ, получаем:

Мы получили связь между линейной и угловой скоростью. Важно отметить, что удобство использования угловой скорости связано с тем, что она не зависит от радиуса окружности. В свою очередь, линейная скорость v возрастает линейно с увеличением r.

Остается записать связь между линейным ускорением a и его угловым аналогом α. Чтобы это сделать, запишем выражение для скорости v при равноускоренном движении без начальной скорости v0. Получаем:

Подставляем сюда полученное выражение связи между v и ω:

Как и скорость, линейное ускорение, направленное по касательной к окружности, зависит от радиуса.

Видео:Кинематика. Решение задач на движение по окружности. Урок 5Скачать

Кинематика. Решение задач на движение по окружности. Урок 5

Ускорение центростремительное

Выше уже было сказано несколько слов об этой величине. Здесь приведем формулы, которые можно использовать для ее вычисления. Через скорость v выражение для центростремительного ускорения ac имеет вид:

Через угловую скорость его можно записать так:

Величина ac не имеет никакого отношения к тангенциальному ускорению a. Центростремительное ускорение обеспечивает поддержание вращающегося тела на одной окружности.

Задача на определение угловой скорости вращения планеты

Равноускоренное движение по окружности

Известно, что ближе всего к солнцу находится Меркурий. Полагая, что он вращается по окружности вокруг светила, мы можем определить его угловую скорость ω.

Для решения задачи следует обратиться к справочным данным. Из них известно, что планета делает полный оборот вокруг светила за 87 дней 23,23 часа земных. Это время называется периодом обращения. Учитывая, что движение происходит с постоянной угловой скоростью, запишем рабочую формулу:

Остается перевести время в секунды, подставить значение угла θ, соответствующее полному обороту (2*pi), и записать ответ: ω = 8,26*10-7 рад/c.

Поделиться или сохранить к себе: