С помощю этого онлайн калькулятора можно найти радиус вписанной в любой треугольник окружности, в том числе радиус вписанной в равносторонний треугольник окружности. Для нахождения радиуса вписанной в треугольник окружности выберите тип треугольника, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
Открыть онлайн калькулятор |
- 1. Радиус вписанной в равносторонний треугольник окружности, если известна сторона треугольника
- 2. Радиус вписанной в равносторонний треугольник окружности, если известна высота треугольника
- 3. Радиус вписанной в равносторонний треугольник окружности, если известна площадь треугольника
- Радиус вписанной окружности в равносторонний треугольник
- Нахождение радиуса вписанной в треугольник окружности
- Формулы вычисления радиуса вписанной окружности
- Произвольный треугольник
- Прямоугольный треугольник
- Равнобедренный треугольник
- Равносторонний треугольник
- Примеры задач
- 🔍 Видео
Видео:Окружность вписана в равносторонний треугольник, найти радиусСкачать
1. Радиус вписанной в равносторонний треугольник окружности, если известна сторона треугольника
Пусть известна сторона a равностороннего треугольника (Рис.1). Выведем формулу вычисления радиуса вписанной в треугольник окружности.
Радиус вписанной в равнобедренный треугольник окружности через основание a и боковую сторону b вычисляется из следующей формулы:
(1) |
Учитывая, что у равностороннего треугольника все стороны равны (( small a=b )), имеем:
( small r=frac cdot sqrt<frac> ) ( small =frac cdot sqrt<frac> ) ( small =frac<large 2 cdot sqrt> ) |
( small r=frac<large 2 cdot sqrt> ) | (2) |
или, умножив числитель и знаменатель на ( small sqrt ):
( small r=frac<large sqrt> cdot a ) | (3) |
Пример 1. Известна сторона a=17 равностороннего треугольника. Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся одним из формул (2) и (3). Подставим значения ( small a=17 ) в (3):
Ответ:
Видео:Задание 16 ОГЭ по математике. Окружность вписана в равносторонний треугольник.Скачать
2. Радиус вписанной в равносторонний треугольник окружности, если известна высота треугольника
Пусть известна высота h равностороннего треугольника (Рис.2). Выведем формулу радиуса вписанной в треугольник окружности.
Выведем формулу стороны равностороннего треугольника через высоту. Из Теоремы Пифагора имеем:
( small h^2+left( frac right) ^2=a^2.) |
( small h^2+ frac =a^2; ; ) ( small fraca^2 =h^2; ; ) ( small a^2=frac.) |
( small a= frac<large sqrt> .) | (4) |
Формула радиуса вписанной в равнобедренный треугольник окружности по основанию и высоте вычисляется из формулы
( small r= large frac<a+sqrt> ) | (5) |
Подставляя (4) в (5), получим:
( small r= large frac<frac<large sqrt>><frac<large sqrt>+sqrt<frac+4h^2>> ) ( small = large frac<frac<large sqrt>><frac<large sqrt>+sqrt<frac>> ) ( small = large frac<frac<large sqrt>><frac<large sqrt>+frac<large sqrt>> ) ( small = large fracsmall =large frac small cdot h ) |
То есть, радиус вписанной в равносторонний треугольник окружности по высоте вычисляется из формулы:
( small r = large frac small cdot h ) | (6) |
Пример 2. Известна высота ( small h=39 ) равностороннего треугольника. Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (6). Подставим значение ( small h=39 ) в (6):
Ответ:
Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать
3. Радиус вписанной в равносторонний треугольник окружности, если известна площадь треугольника
Пусть известна площадь S равностороннего треугольника (Рис.3). Найдем формулу радиуса вписанной в треугольник окружности.
Площадь равностороннего треугольника по радиусу вписанной окружности вычисляется из следующей формулы:
( small S= 3cdot sqrtr^2.) |
( small r^2= large frac |
( small r= large frac <sqrt[4]> small cdot sqrt | (7) |
Пример 3. Известна площадь равностороннего треугольника: ( small S=42 . ) Найти радиус окружности вписанной в треугольник.
Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (7). Подставим значение ( small S=42 ) в (7):
Ответ:
Видео:Задача 6 №27910 ЕГЭ по математике. Урок 130Скачать
Радиус вписанной окружности в равносторонний треугольник
a — сторона треугольника
r — радиус вписанной окружности
Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):
Калькулятор — вычислить, найти радиус вписанной окружности в равносторонний треугольник
Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать
Нахождение радиуса вписанной в треугольник окружности
В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, вписанной в произвольный (любой), прямоугольный, равнобедренный или равносторонний треугольник. Также разберем примеры решения задач для закрепления представленного теоретического материала.
Видео:Формулы для радиуса окружности #shortsСкачать
Формулы вычисления радиуса вписанной окружности
Произвольный треугольник
Радиус окружности, вписанной в любой треугольник, равняется удвоенной площади треугольника, деленной на его периметр.
где a, b, c – стороны треугольника, S – его площадь.
Прямоугольный треугольник
Радиус окружности, вписанной в прямоугольный треугольник, равняется дроби, в числителе которого сумма катетов минус гипотенуза, в знаменателе – число 2.
где a и b – катеты, c – гипотенуза треугольника.
Равнобедренный треугольник
Радиус вписанной в равнобедренный треугольник окружности вычисляется по формуле ниже:
где a – боковые стороны, b – основание треугольника.
Равносторонний треугольник
Радиус вписанной в правильный (равносторонний) треугольник окружности рассчитывается следующим образом:
где a – сторона треугольника.
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Примеры задач
Задание 1
Дан треугольник со сторонами 5, 7 и 10 см. Вычислите радиус вписанной в него окружности.
Решение
Сперва вычислим площадь треугольника. Для этого применим формулу Герона:
Остается только применить соответствующую формулу для вычисления радиуса круга:
Задание 2
Боковые стороны равнобедренного треугольника равны 16 см, а основание 7 см. Найдите радиус вписанной в фигуру окружности.
Решение
Воспользуемся подходящей формулой, подставив в нее известные значения:
🔍 Видео
Формулы равностороннего треугольника #shortsСкачать
ОГЭ 2020 задание 17Скачать
15 задание треугольники огэ по математике / маттаймСкачать
ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать
Задача 6 №27917 ЕГЭ по математике. Урок 134Скачать
Окружность вписанная в треугольник и описанная около треугольника.Скачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Вписанная и описанная окружность - от bezbotvyСкачать
Геометрия. ОГЭ по математике. Задание 16Скачать
ОГЭ 16🔴Скачать
Задача 6 №27909 ЕГЭ по математике. Урок 129Скачать
Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математикаСкачать
найти радиус окружности, описанной вокруг треугольникаСкачать