Радиус описанной окружности около треугольника доказательство формулы

Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Радиус описанной окружности около треугольника доказательство формулыСерединный перпендикуляр к отрезку
Радиус описанной окружности около треугольника доказательство формулыОкружность описанная около треугольника
Радиус описанной окружности около треугольника доказательство формулыСвойства описанной около треугольника окружности. Теорема синусов
Радиус описанной окружности около треугольника доказательство формулыДоказательства теорем о свойствах описанной около треугольника окружности

Радиус описанной окружности около треугольника доказательство формулы

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Радиус описанной окружности около треугольника доказательство формулы

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Радиус описанной окружности около треугольника доказательство формулы

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Радиус описанной окружности около треугольника доказательство формулы

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Радиус описанной окружности около треугольника доказательство формулы

Радиус описанной окружности около треугольника доказательство формулы

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Радиус описанной окружности около треугольника доказательство формулы

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Радиус описанной окружности около треугольника доказательство формулы

Радиус описанной окружности около треугольника доказательство формулы

Полученное противоречие и завершает доказательство теоремы 2

Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Радиус описанной окружности около треугольника доказательство формулы

Видео:Формулы для радиуса окружности #shortsСкачать

Формулы для радиуса окружности #shorts

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Радиус описанной окружности около треугольника доказательство формулы,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Радиус описанной окружности около треугольника доказательство формулы

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Радиус описанной окружности около треугольника доказательство формулыВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаРадиус описанной окружности около треугольника доказательство формулыОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиРадиус описанной окружности около треугольника доказательство формулыЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиРадиус описанной окружности около треугольника доказательство формулыЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовРадиус описанной окружности около треугольника доказательство формулы
Площадь треугольникаРадиус описанной окружности около треугольника доказательство формулы
Радиус описанной окружностиРадиус описанной окружности около треугольника доказательство формулы
Серединные перпендикуляры к сторонам треугольника
Радиус описанной окружности около треугольника доказательство формулы

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаРадиус описанной окружности около треугольника доказательство формулы

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиРадиус описанной окружности около треугольника доказательство формулы

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиРадиус описанной окружности около треугольника доказательство формулы

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиРадиус описанной окружности около треугольника доказательство формулы

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовРадиус описанной окружности около треугольника доказательство формулы

Для любого треугольника справедливы равенства (теорема синусов):

Радиус описанной окружности около треугольника доказательство формулы,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаРадиус описанной окружности около треугольника доказательство формулы

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиРадиус описанной окружности около треугольника доказательство формулы

Для любого треугольника справедливо равенство:

Радиус описанной окружности около треугольника доказательство формулы

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Радиус описанной окружности около треугольника доказательство формулы

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Радиус описанной окружности около треугольника доказательство формулы

Радиус описанной окружности около треугольника доказательство формулы.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Радиус описанной окружности около треугольника доказательство формулы

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Теорема синусов

Радиус описанной окружности около треугольника доказательство формулы

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Геометрия Доказательство Площадь S треугольника можно вычислить по формуле S = abc/(4R) где a b cСкачать

Геометрия Доказательство Площадь S треугольника можно вычислить по формуле S = abc/(4R) где a b c

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Радиус описанной окружности около треугольника доказательство формулы

Формула теоремы синусов:

Радиус описанной окружности около треугольника доказательство формулы

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Радиус описанной окружности около треугольника доказательство формулы

Из этой формулы мы получаем два соотношения:


    Радиус описанной окружности около треугольника доказательство формулы

Радиус описанной окружности около треугольника доказательство формулы
На b сокращаем, синусы переносим в знаменатели:
Радиус описанной окружности около треугольника доказательство формулы

  • Радиус описанной окружности около треугольника доказательство формулы
    bc sinα = ca sinβ
    Радиус описанной окружности около треугольника доказательство формулы
  • Из этих двух соотношений получаем:

    Радиус описанной окружности около треугольника доказательство формулы

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Видео:Формула радиуса описанной окружности треугольника. Геометрия 9 классСкачать

    Формула радиуса описанной окружности треугольника. Геометрия 9 класс

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    Радиус описанной окружности около треугольника доказательство формулы

    Радиус описанной окружности около треугольника доказательство формулы

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Радиус описанной окружности около треугольника доказательство формулы

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Радиус описанной окружности около треугольника доказательство формулы

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Радиус описанной окружности около треугольника доказательство формулы

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° — α.

    Радиус описанной окружности около треугольника доказательство формулы

    Вспомним свойство вписанного в окружность четырёхугольника:

    Радиус описанной окружности около треугольника доказательство формулы

    Также известно, что sin(180° — α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° — α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° — 60°) = sin60° = 3/√2;
    • sin150° = sin(180° — 30°) = sin30° = 1/2;
    • sin135° = sin(180° — 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    Радиус описанной окружности около треугольника доказательство формулы

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Радиус описанной окружности около треугольника доказательство формулы

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

    №706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    Радиус описанной окружности около треугольника доказательство формулы

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Радиус описанной окружности около треугольника доказательство формулы

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    Радиус описанной окружности около треугольника доказательство формулы

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    Радиус описанной окружности около треугольника доказательство формулы

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    Радиус описанной окружности около треугольника доказательство формулы

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Радиус описанной окружности около треугольника доказательство формулы

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Радиус описанной окружности около треугольника доказательство формулы

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° — α)

    Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

    Видео:🔴 Радиус окружности, описанной около треугольника ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 4 | ШКОЛА ПИФАГОРАСкачать

    🔴 Радиус окружности, описанной около треугольника ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 4 | ШКОЛА ПИФАГОРА

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:
    Радиус описанной окружности около треугольника доказательство формулы
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Радиус описанной окружности около треугольника доказательство формулы

    Радиус описанной окружности около треугольника доказательство формулы

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Видео:Радиус описанной около треугольника окружностиСкачать

    Радиус описанной около треугольника окружности

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >
    Радиус описанной окружности около треугольника доказательство формулы

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    Видео:Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2Скачать

    Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2

    Радиус описанной около треугольника окружности

    Радиус описанной около треугольника окружности можно найти по одной из двух общих формул.

    Кроме того, для правильного и прямоугольного треугольников существуют дополнительные формулы.

    Радиус описанной около произвольного треугольника окружности

    Радиус описанной окружности около треугольника доказательство формулы

    Радиус описанной окружности около треугольника доказательство формулы

    То есть радиус описанной окружности равен отношению длины стороны треугольника к удвоенному синусу противолежащего этой стороне угла.

    В общем виде эту формулу записывают так:

    Радиус описанной окружности около треугольника доказательство формулы

    Радиус описанной окружности около треугольника доказательство формулы

    Радиус описанной окружности около треугольника доказательство формулы

    То есть чтобы найти радиус описанной около треугольника окружности, надо произведения длин сторон треугольника разделить на четыре площади треугольника.

    Если площадь треугольника находить по формуле Герона

    Радиус описанной окружности около треугольника доказательство формулы

    где p — полупериметр,

    Радиус описанной окружности около треугольника доказательство формулы

    то получим формулу радиуса описанной около треугольника окружности через длины сторон:

    Радиус описанной окружности около треугольника доказательство формулы

    Радиус описанной окружности около треугольника доказательство формулы

    Обе эти формулы можно применить к треугольнику любого вида. Следует только учесть положение центра.

    Центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы.

    Центр описанной около тупоугольного треугольника окружности лежит вне треугольника, напротив тупого угла.

    Радиус окружности, описанной около прямоугольного треугольника

    Радиус описанной окружности около треугольника доказательство формулыФормула:

    Радиус описанной окружности около треугольника доказательство формулы

    То есть в прямоугольном треугольнике радиус описанной окружности равен половине гипотенузы.

    Обычно гипотенузу обозначают через c (AB=c) и формулу записывают так:

    Радиус описанной окружности около треугольника доказательство формулы

    Радиус окружности, описанной около правильного треугольника

    Радиус описанной окружности около треугольника доказательство формулы

    Радиус описанной окружности около треугольника доказательство формулы

    Если без иррациональности в знаменателе, то

    Радиус описанной окружности около треугольника доказательство формулы

    В равностороннем треугольнике радиус описанной окружности в два раза больше радиуса вписанной окружности:

    📺 Видео

    ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

    ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ

    Вписанная и описанная окружность - от bezbotvyСкачать

    Вписанная и описанная окружность - от bezbotvy

    Геометрия Радиус окружности описанной около треугольника равен R а два угла треугольника равны α и βСкачать

    Геометрия Радиус окружности описанной около треугольника равен R а два угла треугольника равны α и β

    Задание 24 ОГЭ по математике #7Скачать

    Задание 24 ОГЭ по математике #7

    Геометрия Доказательство Площадь треугольника равна произведению его полупериметра и радиусаСкачать

    Геометрия Доказательство Площадь треугольника равна произведению его полупериметра и радиуса

    Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

    Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

    Геометрия. 9 класс. Формулы для нахождения радиусов вписанной и описанной окружностей треугольникаСкачать

    Геометрия. 9 класс. Формулы для нахождения радиусов вписанной и описанной окружностей треугольника

    Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

    Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.
    Поделиться или сохранить к себе: