Окружность проходящая через две стороны и две вершины треугольника

Треугольник вписанный в окружность

Окружность проходящая через две стороны и две вершины треугольника

Видео:65 Вписанная окружность и окружность, проходящая через две вершины и центр вписанной окружностиСкачать

65 Вписанная окружность и окружность, проходящая через две вершины и центр вписанной окружности

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Окружность проходящая через две стороны и две вершины треугольника

Видео:Окружность данного радиуса, проходящей через две заданные точкиСкачать

Окружность данного радиуса, проходящей через две заданные точки

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = fracab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Видео:Геометрия. 7 класс. Урок 9 "Окружность проходящая через вершины треугольника"Скачать

Геометрия. 7 класс. Урок 9 "Окружность проходящая через вершины треугольника"

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Видео:ОГЭ по математике. Задача 26Скачать

ОГЭ по математике. Задача 26

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

Окружность проходящая через две стороны и две вершины треугольника

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Видео:Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |Скачать

Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |

Вневписанная окружность треугольника.

Окружность проходящая через две стороны и две вершины треугольника

Определение.

Окружность, касающаяся стороны треугольника и продолжения двух других его сторон, называется вневписанной окружностью треугольника.

Теорема 1.

Центр окружности, вневписанной в треугольник, есть точка пересечения биссектрис двух внешних и одного внутреннего угла треугольника.

Окружность проходящая через две стороны и две вершины треугольника

Доказательство.

BF — биссектриса ∠JBG, следовательно F равноудалена от сторон данного угла.

СF — биссектриса ∠JСH, следовательно F равноудалена от сторон данного угла.

Следовательно, точка F равноудалена от сторон ∠BAC.

Таким образом, точка F — центр окружности, касающейся стороны BC и продолжения сторон AB и AC. По определению данная окружность называется вневписанной окружностью треугольника.

Теорема 2.

Отрезок, соединяющий вершину треугольника с точкой касания вневписанной окружности и противолежащей стороны, делит треугольник на два треугольника равного периметра.

Окружность проходящая через две стороны и две вершины треугольника

Доказательство.

BJ=BG, GC=CH и AJ=AH (свойство отрезков касательных, проведенных из одной точки к окружности).

PΔABC=AB+ BC +AC=AB+ BG + GC +AC=AB+ BJ + AC +CH=AJ+AH.

Так как AJ=AH, то PΔABC/2=AJ=AH и PΔABC/2+AG=AJ+AG=AH+AG=AB+BG+GA=AC+CG+GA.

Следовательно, отрезок AG поделил треугольник ABC на два треугольника равного периметра PΔABC/2+AG.

Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Окружность проходящая через две стороны и две вершины треугольникаСерединный перпендикуляр к отрезку
Окружность проходящая через две стороны и две вершины треугольникаОкружность описанная около треугольника
Окружность проходящая через две стороны и две вершины треугольникаСвойства описанной около треугольника окружности. Теорема синусов
Окружность проходящая через две стороны и две вершины треугольникаДоказательства теорем о свойствах описанной около треугольника окружности

Окружность проходящая через две стороны и две вершины треугольника

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Окружность проходящая через две стороны и две вершины треугольника

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Окружность проходящая через две стороны и две вершины треугольника

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Окружность проходящая через две стороны и две вершины треугольника

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Окружность проходящая через две стороны и две вершины треугольника

Окружность проходящая через две стороны и две вершины треугольника

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Окружность проходящая через две стороны и две вершины треугольника

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Окружность проходящая через две стороны и две вершины треугольника

Окружность проходящая через две стороны и две вершины треугольника

Полученное противоречие и завершает доказательство теоремы 2

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Окружность проходящая через две стороны и две вершины треугольника

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Окружность проходящая через две стороны и две вершины треугольника,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Окружность проходящая через две стороны и две вершины треугольника

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Окружность проходящая через две стороны и две вершины треугольникаВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаОкружность проходящая через две стороны и две вершины треугольникаОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиОкружность проходящая через две стороны и две вершины треугольникаЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиОкружность проходящая через две стороны и две вершины треугольникаЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовОкружность проходящая через две стороны и две вершины треугольника
Площадь треугольникаОкружность проходящая через две стороны и две вершины треугольника
Радиус описанной окружностиОкружность проходящая через две стороны и две вершины треугольника
Серединные перпендикуляры к сторонам треугольника
Окружность проходящая через две стороны и две вершины треугольника

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаОкружность проходящая через две стороны и две вершины треугольника

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиОкружность проходящая через две стороны и две вершины треугольника

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиОкружность проходящая через две стороны и две вершины треугольника

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиОкружность проходящая через две стороны и две вершины треугольника

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовОкружность проходящая через две стороны и две вершины треугольника

Для любого треугольника справедливы равенства (теорема синусов):

Окружность проходящая через две стороны и две вершины треугольника,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаОкружность проходящая через две стороны и две вершины треугольника

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиОкружность проходящая через две стороны и две вершины треугольника

Для любого треугольника справедливо равенство:

Окружность проходящая через две стороны и две вершины треугольника

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Окружность проходящая через две стороны и две вершины треугольника

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Окружность проходящая через две стороны и две вершины треугольника

Окружность проходящая через две стороны и две вершины треугольника.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Окружность проходящая через две стороны и две вершины треугольника

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

🎦 Видео

ЕГЭ задание 16 Внутреннее касание двух окружностейСкачать

ЕГЭ задание 16 Внутреннее касание двух окружностей

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

ОГЭ. Задание 24. Геометрическая задача на вычисление.Скачать

ОГЭ. Задание 24. Геометрическая задача на вычисление.

#29. Регион ВсОШ 2023, 9.5Скачать

#29. Регион ВсОШ 2023, 9.5

ТОП-3 конструкции с окружностями для №16 из ЕГЭ 2023 по математикеСкачать

ТОП-3 конструкции с окружностями для №16 из ЕГЭ 2023 по математике

Задача про две вневписанные окружности | ЕГЭ. Задание 16. Математика | Борис Трушин |Скачать

Задача про две вневписанные окружности | ЕГЭ. Задание 16. Математика | Борис Трушин |

Три точки, задающие окружностьСкачать

Три точки, задающие окружность

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

4K Как вписать окружность в треугольник, inscribed circle for triangleСкачать

4K Как вписать окружность в треугольник, inscribed circle for triangle

C4-2012-треугольник и две окружностиСкачать

C4-2012-треугольник и две окружности
Поделиться или сохранить к себе: