Окружность описанная около прямоугольного треугольника. В этой публикации мы с вами рассмотрим доказательство одного «математического факта», который широко используется при решении задач по геометрии. В одних источниках сей факт обозначается как теорема, в других как свойство, формулировки имеются разные, но суть их одна:
Любой треугольник построенный на диаметре окружности, третья вершина которого лежит на этой окружности является прямоугольным!
То есть закономерность в этом геометрическом узоре состоит в том, что, куда бы вы ни поместили вершину треугольника, угол при этой вершине всегда будет прямым:
Заданий присутствующих с составе экзамена по математике, в ходе решений которых используется это свойство, достаточно много.
Стандартное доказательство считаю весьма путанным и перегруженным математическими символами, его вы найдёте в учебнике. Мы же рассмотрим простое и интуитивно понятное. Его я обнаружил в одном замечательном эссе под названием » Плач математика «, рекомендую к прочтению учителям и ученикам.
Сначала вспомним некоторые теоретические моменты:
Признак параллелограмма. У параллелограмма противолежащие стороны равны. То есть если у четырехугольника обе пары противолежащих сторон равны, то этот четырехугольник – параллелограмм.
Признак прямоугольника. Прямоугольник является параллелограммом, и его диагонали равны. То есть если у параллелограмма диагонали равны, то он является прямоугольником.
*Прямоугольник является параллелограммом, это его частный случай.
Возьмем треугольник и относительно центра окружности повернем его на 180 0 (перевернём его). У нас получится четырехугольник, вписанный в окружность:
Поскольку мы просто повернули треугольник, то противолежащие стороны четырехугольника равны, значит это параллелограмм. Поскольку треугольник повернут ровно на 180 градусов, значит его вершина диаметрально противоположна вершине «исходного» треугольника.
Получается, что диагонали четырёхугольника равны, так они являются диаметрами. Имеем четырёхугольник у которого противолежащие стороны равны и диагонали равны, следовательно это есть прямоугольник, а у него все углы прямые.
Вот и всё доказательство!
Можно рассмотреть и такое, тоже простое и понятное:
Из точки С построим отрезок проходящий через центр окружности, другой конец которого будет лежать на противоположной точке окружности (точка D). Точку D соединим с вершинами А и В: Получили четырёхугольник. Треугольник АОD равен треугольнику СОВ по двум сторонам и углу между ними:
Из равенства треугольников следует, что AD = CB.
Аналогично и АС = DB.
Можем сделать вывод, что четырёхугольник является параллелограммом. Кроме того, его диагонали равны – АВ изначально дан как диаметр, СD также диаметр (проходит через точку О).
Таким образом, АСВD прямоугольник, значит все его углы прямые. Доказано!
Ещё один примечательный подход, который ярко и «красиво» говорит нам о том, что рассматриваемый угол всегда прямой.
Посмотрите и вспомните информацию про вписанный угол . А теперь посмотрите на эскиз:
Угол АОВ не что иное как центральный угол опирающийся на дугу АDB, и равен он 180 градусам. Да, АВ это диаметр окружности, но ничто нам не мешает считать АОВ центральным углом (это развёрнутый угол). Угол же АСВ является вписанным для него, он опирается также же дугу на АDB.
А мы знаем, что вписанный угол равен половине центрального, то есть как бы мы не разместили точку С на окружности, угол АСВ всегда будет равен 90 градусам, то является прямым.
Какие выводы можно сделать применительно к решению задач, в частности включённых в экзамен?
Если в условии речь идёт о треугольнике вписанном в окружность и построенном на диаметре этой окружности, то однозначно этот треугольник является прямоугольным.
Если сказано, что прямоугольный треугольник вписан в окружность, то это означает, что его гипотенуза является совпадает с её диаметром (равна ему) и центр гипотенузы совпадает с центром окружности.
Видео:Свойства прямоугольного треугольника. 7 класс.Скачать
Треугольник вписанный в окружность
Видео:№694. Найдите диаметр окружности, вписанной в прямоугольный треугольник, если гипотенузаСкачать
Определение
Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.
На рисунке 1 изображена окружность, описанная около
треугольника и окружность, вписанная в треугольник.
ВD = FC = AE — диаметры описанной около треугольника окружности.
O — центр вписанной в треугольник окружности.
Видео:Прямоугольный треугольник, вписанный в окружность. ЗадачаСкачать
Формулы
Радиус вписанной окружности в треугольник
r — радиус вписанной окружности.
- Радиус вписанной окружности в треугольник,
если известна площадь и все стороны:
Радиус вписанной окружности в треугольник,
если известны площадь и периметр:
Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:
Радиус описанной окружности около треугольника
R — радиус описанной окружности.
- Радиус описанной окружности около треугольника,
если известна одна из сторон и синус противолежащего стороне угла:
Радиус описанной окружности около треугольника,
если известны все стороны и площадь:
Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:
Площадь треугольника
S — площадь треугольника.
- Площадь треугольника вписанного в окружность,
если известен полупериметр и радиус вписанной окружности:
Площадь треугольника вписанного в окружность,
если известен полупериметр:
Площадь треугольника вписанного в окружность,
если известен высота и основание:
Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:
Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:
[ S = fracab cdot sin angle C ]
Периметр треугольника
P — периметр треугольника.
- Периметр треугольника вписанного в окружность,
если известны все стороны:
Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:
Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:
Сторона треугольника
a — сторона треугольника.
- Сторона треугольника вписанного в окружность,
если известны две стороны и косинус угла между ними:
Сторона треугольника вписанного в
окружность, если известна сторона и два угла:
Средняя линия треугольника
l — средняя линия треугольника.
- Средняя линия треугольника вписанного
в окружность, если известно основание:
Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:
Высота треугольника
h — высота треугольника.
- Высота треугольника вписанного в окружность,
если известна площадь и основание:
Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:
[ h = b cdot sin alpha ]
Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:
Видео:Геометрия Найдите диаметр окружности, описанной около прямоугольного треугольника, если один из егоСкачать
Свойства
- Центр вписанной в треугольник окружности
находится на пересечении биссектрис. - В треугольник, вписанный в окружность,
можно вписать окружность, причем только одну. - Для треугольника, вписанного в окружность,
справедлива Теорема Синусов, Теорема Косинусов
и Теорема Пифагора. - Центр описанной около треугольника окружности
находится на пересечении серединных перпендикуляров. - Все вершины треугольника, вписанного
в окружность, лежат на окружности. - Сумма всех углов треугольника — 180 градусов.
- Площадь треугольника вокруг которого описана окружность, и
треугольника, в который вписана окружность, можно найти по
формуле Герона.
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Доказательство
Около любого треугольника, можно
описать окружность притом только одну.
окружность и треугольник,
которые изображены на рисунке 2.
окружность описана
около треугольника.
- Проведем серединные
перпендикуляры — HO, FO, EO. - O — точка пересечения серединных
перпендикуляров равноудалена от
всех вершин треугольника. - Центр окружности — точка пересечения
серединных перпендикуляров — около
треугольника описана окружность — O,
от центра окружности к вершинам можно
провести равные отрезки — радиусы — OB, OA, OC.
окружность описана около треугольника,
что и требовалось доказать.
Подводя итог, можно сказать, что треугольник,
вписанный в окружность — это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.
Видео:Прямоугольный треугольник Полное досьеСкачать
Прямоугольный треугольник
Прямоугольный треугольник – треугольник, в котором один угол прямой (то есть равен 90˚).
Сторона, противоположная прямому углу, называется гипотенузой прямоугольного треугольника.
Стороны, прилежащие к прямому углу, называются катетами .
Признаки равенства прямоугольных треугольников
Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны ( по двум катетам ).
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны ( по катету и острому углу ).
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и острому углу ).
Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и катету ).
Свойства прямоугольного треугольника
1. Сумма острых углов прямоугольного треугольника равна 90˚.
2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.
И обратно, если в треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.
3. Теорема Пифагора:
, где – катеты, – гипотенуза. Видеодоказательство
4. Площадь прямоугольного треугольника с катетами :
5. Высота прямоугольного треугольника, проведенная к гипотенузе выражается через катеты и гипотенузу следующим образом:
6. Центр описанной окружности – есть середина гипотенузы.
7. Радиус описанной окружности есть половина гипотенузы :
8. Медиана, проведенная к гипотенузе, равна ее половине
9. Радиус вписанной окружности выражается через катеты и гипотенузу следующим образом:
Тригонометрические соотношения в прямоугольном треугольнике смотрите здесь.
🔍 Видео
7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»Скачать
Вписанный в окружность прямоугольный треугольник.Скачать
Найдите гипотенузуСкачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать
№693. В прямоугольный треугольник вписана окружность радиуса r. Найдите периметр треугольника,Скачать
№705. Около прямоугольного треугольника ABC с прямым углом С описана окружность. Найдите радиусСкачать
Вписанная и описанная окружность - от bezbotvyСкачать
Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математикеСкачать
Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать
Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольникСкачать
Теорема Пифагора для чайников)))Скачать
№256. Один из углов прямоугольного треугольника равен 60°, а сумма гипотенузы и меньшего из катетовСкачать
Задание 25 Прямоугольный треугольник Вписанная окружностьСкачать
Задача 6 №27932 ЕГЭ по математике. Урок 146Скачать