Окружность с помощью высот треугольника

Как построить высоту треугольника — основные способы

Окружность с помощью высот треугольника

Видео:Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

С применением циркуля

Если нужно нарисовать высоту (перпендикуляр к противоположной стороне) в произвольном треугольнике и измерить её, то лучше всего воспользоваться классическим методом построения. Он предусматривает использование циркуля в качестве основной рабочей принадлежности. Кроме этого, для работы понадобится лист бумаги, небольшая линейка, ластик и простой карандаш.

Способ начертить искомый отрезок:

Окружность с помощью высот треугольника

Окружность с помощью высот треугольника

  • На листе бумаги чертят треугольник (можно нарисовать заранее, чтобы сэкономить время).
  • Рисунок располагают так, чтобы вершина угла, из которого нужно начертить высоту, находилась сверху, а противоположная ему сторона фигуры была расположена горизонтально (по отношению к ученику).
  • Иглу циркуля ставят в вершине любого угла у основания.
  • Ножку с грифелем ставят в верхнюю точку треугольника, из которой проводится высота.
  • Циркулем рисуют окружность и делают пометку в месте её пересечения с основанием фигуры.
  • Аналогичным способом чертят круг из другого угла при основании. При этом важно определить новый радиус, который будет равен длине второй стороны треугольника.
  • Делают пометку в месте пересечения начерченных окружностей.
  • Ластиком стирают лишние линии, оставляя лишь поставленную точку.
  • С помощью карандаша и линейки из неё проводят отрезок к вершине, который и будет высотой треугольника.
  • Стирают линии, находящиеся под основанием.

Таким же способом можно с помощью циркуля построить высоту треугольника из любого другого угла.

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

С помощью линейки

Начертить и обозначить высоту можно и без циркуля. Для этого следует воспользоваться чертёжным угольником, 2 стороны которого перпендикулярны друг другу. Альтернативой этой школьной принадлежности могут стать 2 прямые линейки, соединённые между собой под прямым углом.

В остроугольном треугольнике

Провести высоту в треугольнике, где все углы острые (менее 90 градусов), довольно просто.

Чтобы справиться с этой задачей, нужно подготовить все необходимое и заранее начертить на бумаге геометрическую фигуру.

Правильная последовательность действий:

  • Находят вершину, из которой хотят провести перпендикуляр.
  • Совмещают угольник с противоположной стороной фигуры.
  • Перемещают чертёжную принадлежность до тех пор, пока её перпендикулярная сторона не пройдёт через вершину.
  • Простым карандашом проводят линию, которая и будет искомым отрезком.

В тупоугольной фигуре

Трёхсторонняя фигура, у которой один из углов тупой (более 90 градусов) имеет только 1 внутреннюю высоту. Для её проведения используют то же, что и в предыдущем случае.

Порядок действий:

  • Располагают чертёж так, чтобы тупой угол оказался у основания.
  • Угольник прикладывают к наибольшей стороне фигуры.
  • Совмещают перпендикулярную сторону линейки с вершиной тупого угла.
  • Соединяют 2 точки простым карандашом, получая искомую линию.

В прямоугольном и равнобедренном

В прямоугольном треугольнике нужно находить только 1 высоту. Две другие будут совпадать с катетами.

Пошаговая инструкция:

  • Прикладывают одну из перпендикулярных сторон угольника к гипотенузе.
  • Вторую сторону линейки совмещают с вершиной прямого угла.
  • Проводят линию, которая будет высотой.

Окружность с помощью высот треугольника

Проще всего проводить перпендикуляр из верхней точки равнобедренного треугольника.

Он будет совпадать с биссектрисой и медианой фигуры. Начертить его можно таким же способом, что и для остроугольной фигуры. Более простой метод предусматривает выполнение следующих действий:

  • Линейкой замеряют длину основания.
  • Эту величину делят на 2.
  • Полученное значение откладывают от вершины одного из углов при основании.
  • Отмечают середину стороны и соединяют её с верхней точкой фигуры.

Проведение высоты в треугольнике — это простая задача, с которой легко справится каждый ученик.

Для этого достаточно сделать чертёж геометрической фигуры и воспользоваться одним из существующих способов построения. Такая работа потребует минимум времени и не отнимет у школьника много сил.

Видео:Построение высоты в треугольникеСкачать

Построение высоты в треугольнике

Замечательные точки и линии треугольников. 9-й класс

Класс: 9

Презентация к уроку

Загрузить презентацию (529 кБ)

Цели:

  • Познакомить с замечательными точками и линиями треугольника;
  • познакомить с методами доказательства свойств замечательных точек и линий треугольника;
  • повторить и обобщить материал по теме «Треугольник».

Задачи развивающие:

  • Развитие умения устанавливать закономерности;
  • развитие умения формулировать гипотезы, опровергать ошибочные и доказывать истинные;
  • развитие умения составлять алгоритм действий и действовать по алгоритму;
  • развитие математической интуиции;
  • развитие графической культуры и математической речи.

Задачи воспитательные:

  • Повышение познавательного интереса;
  • расширение математического кругозора;
  • развитие навыка конструктивного группового взаимодействия независимо от многообразия проявлений индивидуальности;
  • воспитание чувства ответственности;
  • развитие умения выступать перед аудиторией

Тип урока: изучение нового материала.

Метод: проблемно-исследовательский.

Форма: групповая.

Ход урока

1. Организационный момент, объявление темы занятия (слайд 1).

2. Повторение.

Треугольник – фигура удивительная. Она удивляет своей простотой, лаконичностью и в то же время своей универсальностью. Вспомните сколько раз, чтобы решить задачу или доказать теорему мы прибегали к разбиению многоугольника на треугольники.

Треугольник – первая геометрическая фигура, изученная нами в курсе геометрии. И сегодня мы поговорим о новых для вас свойствах треугольника, а треугольник в свою очередь поможет вам повторить очень много изученных в курсе планиметрии тем.

Вспоминаем изученные замечательные точки треугольника:

  • Центр вписанной окружности (точка пересечения биссектрис треугольника);
  • Центр описанной окружности (точка пересечения серединных перпендикуляров к сторонам треугольника);
  • Точка пересечения высот треугольника (ортоцентр);
  • Точка пересечения медиан треугольника.

Также вспоминаем алгоритм построения с помощью циркуля и линейки
каждой из этих точек.

Каждая группа получает индивидуальное задание (приложение 1, задание 1).

Задание № 1. (группа 1)

С помощью циркуля и линейки построить окружность, описанную около треугольника (треугольник остроугольный, тупоугольный и прямоугольный).

Задание № 1. (группа 2)

С помощью циркуля и линейки построить окружность, вписанную в треугольник (треугольник остроугольный, тупоугольный и прямоугольный)

Задание № 1. (группа 3)

С помощью циркуля и линейки построить точку пересечения высот треугольника (треугольник остроугольный, тупоугольный и прямоугольный)

Задание № 1. (группа 4)

С помощью циркуля и линейки построить точку пересечения медиан треугольника (треугольник остроугольный, тупоугольный и прямоугольный)

(Для экономии времени, группы получают заготовленные на альбомных листах изображения треугольников; все построения выполняются фломастерами, циркуль – «козья ножка» также с фломастером).

После выполнения каждая группа демонстрирует свои результаты и комментирует построения. При необходимости учитель вносит дополнения (слайды 3 – 6).

3. Свойство точек, симметричных ортоцентру относительно сторон треугольника.

Как вы думаете, все ли закономерности, связанные с треугольником мы изучили? (приложение 1, задание 2).

Задание № 2.

  1. Постройте произвольную окружность.
  2. Впишите в него произвольный остроугольный треугольник АВС.
  3. Постройте высоты AA1, BB1, CC1. Пусть H — точка пересечения высот.
  4. Постройте точку А2, симметричную точке Н относительно прямой, содержащей сторону ВС.
  5. Постройте точку В2, симметричную точке Н относительно прямой, содержащей сторону АС.
  6. Постройте точку С2, симметричную точке Н относительно прямой, содержащей сторону АВ.

Какое свойство вы заметили?

Сформулируйте свойство точек, симметричных ортоцентру относительно сторон треугольника.

Задание № 2.

  1. Постройте произвольную окружность.
  2. Впишите в него произвольный тупоугольный треугольник АВС.
  3. Постройте высоты AA1, BB1, CC1. Пусть H — точка пересечения высот.
  4. Постройте точку А2, симметричную точке Н относительно прямой, содержащей сторону ВС.
  5. Постройте точку В2, симметричную точке Н относительно прямой, содержащей сторону АС.
  6. Постройте точку С2, симметричную точке Н относительно прямой, содержащей сторону АВ.

Какое свойство вы заметили?

Сформулируйте свойство точек, симметричных ортоцентру относительно сторон треугольника.

Проверяем выполнение задания. Формулируем свойство точек, симметричных ортоцентру относительно сторон треугольника. (Слайды 7, 9)

4. Продолжаем «открывать» новые точки и линии, связанные с геометрией треугольника.

1. А верите ли вы, что, если на сторонах треугольника построить равносторонние треугольники и около них описать окружности, то эти окружности пересекутся в одной точке? (слайд 11).

2. А верите ли вы, что, основания перпендикуляров, опущенных из любой точки окружности на три стороны вписанного в нее треугольника, лежат на одной прямой? (слайд 14).

3. А верите ли вы, что, в треугольнике середины его сторон, середины отрезков, соединяющих его вершины с его ортоцентром, и основания его высот лежат на одной окружности? (слайд 17).

4. А верите ли вы, что, в треугольнике центр описанной окружности, ортоцентр и центр тяжести лежат на одной прямой? (слайд 21).

5. Докажем рассмотренные нами свойства треугольника.

Каждая группа получает карточку с заданием и копию соответствующего слайда на электронном носителе (для экономии времени компьютеры, за которыми будут работать ребята, должны быть подготовлены заранее, фрагмент презентации загружен и выведен на экран). Карточка содержит формулировку задачи, ее доказательство и чертеж. Необходимо подготовить выступление по теме и привести доказательство утверждений, отмеченных значком. (Приложение 1. Задание 3).

Задание № 3 (группа 1)

На сторонах треугольника построены равносторонние треугольники и около них описаны окружности. Докажите, что эти окружности пересекутся в одной точке, называемой точкой Торричелли? Воспользуйтесь подсказкой и докажите утверждение, отмеченное значком «?».

Окружность с помощью высот треугольника

Задание № 3 (группа 2)

Докажите, что основания перпендикуляров, опущенных из любой точки окружности на три стороны вписанного в нее треугольника, лежать на одной прямой (прямая Симпсона)? Воспользуйтесь подсказкой и докажите утверждение, отмеченное значком «?».

Окружность с помощью высот треугольника

Задание № 3 (группа 3)

Докажите, в треугольнике середины его сторон, середины отрезков, соединяющих его вершины с его ортоцентром, и основания его высот лежат на одной окружности (окружность Эйлера)?

Воспользуйтесь подсказкой и докажите утверждения, отмеченные значком «?».

Окружность с помощью высот треугольника

Задание № 3 (группа 4)

Докажите, что в треугольнике центр описанной окружности, ортоцентр и центр тяжести лежат на одной прямой (прямая Эйлера)? (слайд 23)

Воспользуйтесь подсказкой и докажите утверждения, отмеченные значком «?».

Окружность с помощью высот треугольника

Проверяем выполнение задания. Каждая группа «представляет» свою замечательную точку или линию и доказывает связанное с ней утверждение (слайды 12 — 13, 15-16, 18-20, 22-24).

В качестве «сувенира», после доказательства каждой теоремы можно посмотреть соответствующие «созвездия» на «звездном небе» (слайды 28-31, к которым можно перейти с помощью кнопки «астроном», появляющейся, когда доказательство закончено).

Во время выступления слушатели должны отметить, какие теоремы из курса планиметрии за 7-9 классы используются для доказательства каждого утверждения и заполняют таблицу (Приложение 3).

После выступления группа строит соответствующую точку или прямую, выбирая наиболее подходящий чертеж. (Приложение 2.).

Учитель контролирует, при необходимости помогает выполнить построения. По завершении этого этапа работы еще раз проговариваем алгоритм построения.

6. Точки Фейербаха. (Слайды 25, 32)

Ну, и это еще не все!

Вернемся на минуту к окружности Эйлера.

Эта окружность, найденная в XVIII веке великим ученым А.Эйлером, была заново открыта в следующем столетии учителем провинциальной гимназии в Германии. Звали его Карл Фейербах. Он был родным братом известного философа Людвига Фейербаха. Дополнительно К.Фейербах выяснил, что окружность девяти точек имеет еще четыре точки, тесно связанные с геометрией любого треугольника. Это точки ее касания с четырьмя окружностями специального вида.

Одна из этих окружностей вписанная, остальные три – вневписанные. Они вписаны в углы треугольника и касаются внешним образом его сторон. Точки касания этих окружностей с окружностью девяти точек К1, К2, К3 и К – называются точками Фейербаха. Таким образом, окружность девяти точек является в действительности окружностью тринадцати точек.

Ну, и это еще не все!

7. Доказательство свойства точек, симметричных ортоцентру относительно сторон треугольника.

Теперь, вспомнив практически весь материал по теме «Треугольник» и не только (таблица 1), рассмотрев методы доказательств четырех теорем, связанных с геометрией треугольника, мы можем вернуться к вашему сегодняшнему «открытию» и попробовать доказать его самостоятельно.

Доказать свойство точек, симметричных ортоцентру относительно сторон треугольника.

(Группы работают самостоятельно при необходимой помощи учителя)

Наиболее успешное доказательство представляется классу, остальные группы вносят дополнения и замечания (слайды 8, 10, 26, 27)

Ну, и это еще не все!

8. Следствия:

1. Вернемся еще раз к окружности Эйлера: 1) радиус окружности Эйлера равен половине радиуса описанной окружности ∆АВС (слайд 33); 2) ∆АВH, ∆АСH, ∆ВСH имеют ту же окружность Эйлера, что и ∆АВС (слайд 34).

2. Вернемся к точке Торричелли – т.Ферма: 1) отрезки AA1. BB1 и СС1 пересекаются в точке Торричелли и равны между собой; и 2) если точка Торричелли М лежит внутри треугольника, то сумма расстояний от точки М до вершин треугольника MА+MВ+MС – минимальна (слайд 35).

(А в каком случае т.Торичелли не лежит внутри треугольника?)

3. Вернемся к прямой Симпсона: 1) точки F1, E1, D1 — симметричные точке Р относительно сторон ∆АВС, лежат на одной прямой F1D1; 2) прямая F1D1 проходит через ортоцентр Н ∆АВС; 3) прямая Симпсона делит отрезок РН пополам: РК = КН (слайд 36).

4. Вернемся к прямой Эйлера: 1) точка пересечения медиан делит отрезок ОН в отношении 1:2, считая от точки О; 2) центр окружности Эйлера т.N – лежит на прямой Эйлера и делит отрезок OH пополам (слайды 37).

А еще есть Точка Нагеля, точка Жергонна, точка Брокара, точка Лемуана…

9. Подведение итогов урока (обобщение нового материала, анализ работы групп).

Домашнее задание:

  1. Выясните, как расположены точки, симметричные ортоцентру относительно середин сторон треугольника. Сформулируйте теорему и докажите ее.
  2. Подготовьте экспресс-сообщение об ученом, чьим именем была названа точка или линия, свойство которой вы сегодня доказывали (Торричелли, Симпсон, Эйлер, Фейербах).

Литература:

  1. Е.Д. Куланин, С.Н.Федин «Геометрия треугольника в задачах», Москва, книжный дом «Либроком», 2009 г.
  2. И.М.Смирнова, В.А.Смирнов «Геометрия. Нестандартные и исследовательские задачи», учебное пособие 7 -11, Москва, Мнемозина, 2004 г.
  3. «Энциклопедический словарь юного математика», Москва, «Педагогика», 1989г.

Видео:Высоты треугольника.Скачать

Высоты треугольника.

Планиметрия (прямая и окружность)

Планиметрия изучется в начальном курсе геометрии и зачастую сводится к решению практических задач без изучения теоретической базы.
В данной статье приводятся альтернативные (подсказкам) решения задач из первого раздела (кроме 1.5) приложения Euclidea (геометрические построения с помощью циркуля и линейки).

Решения задач 1.1, 1.2 и 1.3 основаны на том, что с помощью циркуля и линейки можно построить равносторонний треугольник.

1.1 Построить угол 60° с заданой стороной

1.2 Построить серединный перпендикуляр к отрезку

На данной ограниченной прямой построить равносторонний треугольник

Окружность с помощью высот треугольника

1.3 Середина отрезка

всё, что можно построить с помощью циркуля и линейки, может быть построено с помощью одного циркуля.

Из точки В радиусом АВ описываем окружность.
По этой окружности откладываем от точки А расстояние АВ три раза: получаем точку С, очевидно, диаметрально противоположную А. Расстояние АС представляет собой двойное рассрастояние АВ. Проведя окружность из С радиусом ВС, мы можем таким же образом найти точку,
диаметрально противоположную В и, следовательно, удаленную от А на
тройное расстояние АВ, и т. д.

Окружность с помощью высот треугольника

любое построение, выполнимое на плоскости циркулем и линейкой, можно выполнить одной линейкой, если нарисована хотя бы одна окружность и отмечен её центр.

Окружность с помощью высот треугольника

Окружность с помощью высот треугольника

Проведем прямые PA и PB и отметим точки D и C их пересечения прямой b. Пусть О — точка пересечения прямых AC и BD. Тогда, согласно предыдущей лемме, прямая PO пересечёт отрезок AB в его середине M.

Решением задачи 1.3 по методу Штейнера-Понеселе будет:

Окружность с помощью высот треугольника

1.4 Окружность, вписанная в квадрат

Из точки A, лежащей вне данной полуокружности, опустить на её диаметр перпендикуляр, обходясь при этом без циркуля. Положение центра полуокружности не указано.

Окружность с помощью высот треугольника

Нам пригодится здесь то свойство треугольника, что все его высоты пересекаются в одной точке. Соединим A с B и C; получим точки D и E. Прямые BE и CD, очевидно, — высоты треугольника ABC. Третья высота — искомый перпендикуляр к BC — должна проходить через пересечение двух других, т.е. через точку M. Проведя по линейке прямую через точки A и M, мы выполним требованиек задачи, не прибегая к услугам циркуля.

Окружность с помощью высот треугольника

И опустив перпендикуляр из точки пересечения диагоналей квадрата на ребро, найдём середину ребра.
Это же построение можно использовать для решения задачи 2.9 Окружность, касающаяся прямой

1.6 Найти центр окружности

Плоский угол, опирающийся на диаметр окружности, — прямой.

Окружность с помощью высот треугольника

Окружность с помощью высот треугольника

Окружность с помощью высот треугольника

Окружность с помощью высот треугольника

Окружность с помощью высот треугольника

Определение: касательной к окружности называется прямая, имеющая с окружностью одну общую точку. Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.

Рассмотрим задачу 2.8
2.8 Касательная к окружности в точке
Возвращаясь к предыдущей задаче, эту задачу можно решить построив угол, опирающийся на диаметр окружности по теореме Фалеса

Окружность с помощью высот треугольника

Окружность с помощью высот треугольника

Окружность с помощью высот треугольника

Окружность с помощью высот треугольника

Окружность с помощью высот треугольника

Далее, построив перпендикуляр к касательной, найдём диаметр окружности, и, разделив его пополам, найдём центр окружности.

Ещё об одном способе построения касательной к окружности можно узнать из лекции 1.5 курса «Геометрия и группы» А. Савватеева ссылка

1.7 Квадрат, вписанный в окружность

Задача Наполеона

Окружность с помощью высот треугольника

Решим задачу методом Мора-Маскерони.
Построим три окружности радиусом r и две окружности радиусом Окружность с помощью высот треугольника

Окружность с помощью высот треугольника

В приложении нет такой операции, как перенос раствора циркуля (равного MO), поэтому необходимо использовать дополнительные построения.
Для того, чтобы построить касательную к исходной окружности, параллельную МО, необходимо произвести построения, которые были приведены выше (построить три окружности радиусом r и две окружности радиусом Окружность с помощью высот треугольника), но вместо исходной окружности взять окружность, обозначенную на рисунке синим цветом
Окружность с помощью высот треугольника
Т.о. мы перенесли раствор циркуля (равный МО) в точку А.
Далее из точки А необходимо провести окружность c радиусом МО
Окружность с помощью высот треугольника

🌟 Видео

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Построение биссектрисы в треугольникеСкачать

Построение биссектрисы в треугольнике

Построение равностронего треугольника.Скачать

Построение равностронего треугольника.

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

№154. Дан треугольник ABC. Постройте: а) биссектрису АК; б) медиану ВМ; в) высоту СН треугольника.Скачать

№154. Дан треугольник ABC. Постройте: а) биссектрису АК; б) медиану ВМ; в) высоту СН треугольника.

#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая ЭйлераСкачать

#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая Эйлера

Равносторонний треугольник в окружностиСкачать

Равносторонний треугольник в окружности

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

Изогонали угла. Радиус описанной окружности и высота, проведенные из одной вершины треугольника.Скачать

Изогонали угла. Радиус описанной окружности и высота, проведенные из одной вершины треугольника.

Треугольник и окружность #shortsСкачать

Треугольник и окружность #shorts

8 класс, 37 урок, Теорема о пересечении высот треугольникаСкачать

8 класс, 37 урок, Теорема о пересечении высот треугольника
Поделиться или сохранить к себе: