Прямоугольный треугольник – треугольник, в котором один угол прямой (то есть равен 90˚).
Сторона, противоположная прямому углу, называется гипотенузой прямоугольного треугольника.
Стороны, прилежащие к прямому углу, называются катетами .
Признаки равенства прямоугольных треугольников
Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны ( по двум катетам ).
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны ( по катету и острому углу ).
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и острому углу ).
Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и катету ).
Свойства прямоугольного треугольника
1. Сумма острых углов прямоугольного треугольника равна 90˚.
2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.
И обратно, если в треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.
3. Теорема Пифагора:
, где – катеты, – гипотенуза. Видеодоказательство
4. Площадь прямоугольного треугольника с катетами :
5. Высота прямоугольного треугольника, проведенная к гипотенузе выражается через катеты и гипотенузу следующим образом:
6. Центр описанной окружности – есть середина гипотенузы.
7. Радиус описанной окружности есть половина гипотенузы :
8. Медиана, проведенная к гипотенузе, равна ее половине
9. Радиус вписанной окружности выражается через катеты и гипотенузу следующим образом:
Тригонометрические соотношения в прямоугольном треугольнике смотрите здесь.
Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать
Стороны прямоугольного треугольника
Средняя оценка: 4.3
Всего получено оценок: 94.
Средняя оценка: 4.3
Всего получено оценок: 94.
Прямоугольный треугольник фигура особенная настолько, что для каждой из его сторон придумали отдельное название. Кроме того, существуют специальные способы нахождения сторон несколькими способами. Поговорим о каждом из них, обоснуем все формулы и решим несколько задач для примера.
Видео:Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать
Определение
Две стороны, прилежащие к прямому углу называются катетами. А сторона, противоположная прямому углу – гипотенузой. Зачем придумали эти названия? Просто для того, чтобы было удобнее запоминать определения. Например, определение синус – отношение противолежащего катета к гипотенузе. Без специальных названий определения были бы слишком громоздкими.
Соотношение сторон в любом треугольнике таково, что напротив наибольшего угла лежит наибольшая сторона, поэтому самой большой стороной прямоугольного треугольника всегда является гипотенуза. С другой стороны, по теореме о неравенствах треугольника гипотенуза всегда меньше суммы катетов.
Что необходимо для того, чтобы без проблем решать треугольники, т. е. находить значение всех сторон и углов в прямоугольном треугольнике? Не так много: теорему Пифагора и тригонометрические тождества.
Теорема Пифагора гласит, что квадрат гипотенузы равен сумме квадратов катетов.
Синус это отношение противолежащего катета к гипотенузе. А косинус это отношение прилежащего катета к гипотенузе.
Видео:Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 классСкачать
Задача 1
У сейфа ключ имеющий сечение прямоугольного треугольника. Для того, чтобы мастеру изготовить новый ключ, взамен утерянного, нужно восстановить значения сторон треугольника. Хозяин сейфа помнит только, что для измерения пользовался ниточкой в 1,5 см. И обмеряя каждую сторону он использовал ниточку 3,4 и 5 раз. Найти значение сторон прямоугольного треугольника.
У этой задачи интересная формулировка. Но по факту, если обозначить за букву, а размер нити, то получим размеры сторон прямоугольного треугольника: 3а, 4а и 5а. Гипотенуза будет размером 5а, так как это наибольший размер стороны.
Тогда, значение а нам известно: а=1,5. Найдем значение каждой из сторон.
Вот и все решение задачи. Главное разобраться в условии и решение не покажется сложным.
Видео:Нахождение стороны прямоугольного треугольникаСкачать
Задача 2
В равнобедренном прямоугольном треугольнике основание равняется 8, а медиана, проведенная к гипотенузе, – 2. Найти катеты треугольника.
Рис. 3. Рисунок к задаче.
В этой задаче снова немного закручено условие. Для начала нужно разобраться, какая из сторон является основанием.
В равнобедренном прямоугольном треугольнике основание – это всегда гипотенуза.
Если катет станет основанием, то другой катет и гипотенуза были бы равны между собой по определению равнобедренного треугольника, как боковые стороны. Но это невозможно, значит, основание это всегда гипотенуза.
Медиана проведена к гипотенузе, а значит к основанию. Медиана, проведенная к основанию равнобедренного треугольника, является одновременно медианой, биссектрисой и высотой. Значит у нас есть значение основании и высоты. Найдем площадь, как половину произведения основания на высоту, проведенную к этому основанию
С другой стороны, в прямоугольном треугольнике площадь равна половине произведения катетов, а они в равнобедренном треугольнике равны.
Приравняем значения площади и выразим катет:
Ответ найден. Как видно из двух задач, единственная проблема в нахождении сторон прямоугольного треугольника – это разобраться в условии.
Видео:Решение прямоугольных треугольниковСкачать
Что мы узнали?
Мы разобрались с вопросом нахождения сторон прямоугольного треугольника. Поговорили о том, как называются стороны такого треугольника. Выделили формулы и теоремы, необходимые для решения прямоугольных треугольников.
Видео:Свойства прямоугольного треугольника. 7 класс.Скачать
Прямоугольные треугольники
Прямоугольный треугольник — это треугольник, у которого один угол прямой (равен $90$ градусов).
Катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.
Некоторые свойства прямоугольного треугольника:
1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
2. Если в прямоугольном треугольнике один из острых углов равен $45$ градусов, то этот треугольник равнобедренный.
3. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)
4. Катет прямоугольного треугольника, лежащий напротив угла в $60$ градусов, равен малому катету этого треугольника, умноженному на $√3$.
5. В равнобедренном прямоугольном треугольнике гипотенуза равна катету, умноженному на $√2$
6. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности $(R)$
7. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями, которых являются катеты данного треугольника.
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
Соотношение между сторонами и углами в прямоугольном треугольнике:
В прямоугольном треугольнике $АВС$, с прямым углом $С$
Для острого угла $В$: $АС$ — противолежащий катет; $ВС$ — прилежащий катет.
Для острого угла $А$: $ВС$ — противолежащий катет; $АС$ — прилежащий катет.
1. Синусом $(sin)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
2. Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
3. Тангенсом $(tg)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
4. Котангенсом $(ctg)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
В прямоугольном треугольнике $АВС$ для острого угла $В$:
5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.
Значения тригонометрических функций некоторых углов:
$α$ | $30$ | $45$ | $60$ |
$sinα$ | $/$ | $/$ | $/$ |
$cosα$ | $/$ | $/$ | $/$ |
$tgα$ | $/$ | $1$ | $√3$ |
$ctgα$ | $√3$ | $1$ | $/$ |
Площадь прямоугольного треугольника равна половине произведения его катетов
В треугольнике $АВС$ угол $С$ равен $90$ градусов, $АВ=10, АС=√$. Найдите косинус внешнего угла при вершине $В$.
Так как внешний угол $АВD$ при вершине $В$ и угол $АВС$ смежные, то
Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. Следовательно, для угла $АВС$:
Катет $ВС$ мы можем найти по теореме Пифагора:
Подставим найденное значение в формулу косинуса
В треугольнике $АВС$ угол $С$ равен $90$ градусов, $sinA=/, AC=9$. Найдите $АВ$.
Распишем синус угла $А$ по определению:
Так как мы знаем длину катета $АС$ и он не участвует в записи синуса угла $А$, то можем $ВС$ и $АВ$ взять за части $4х$ и $5х$ соответственно.
Применим теорему Пифагора, чтобы отыскать $«х»$
Так как длина $АВ$ составляет пять частей, то $3∙5=15$
В прямоугольном треугольнике с прямым углом $С$ и высотой $СD$:
Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота поделила гипотенузу.
В прямоугольном треугольнике : квадрат катета равен произведению гипотенузы на проекцию этого катета на гипотенузу.
Произведение катетов прямоугольного треугольника равно произведению его гипотенузы на высоту, проведенную к гипотенузе.
📽️ Видео
ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать
Решение прямоугольных треугольников. Практическая часть. 8 класс.Скачать
Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать
Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математикеСкачать
Теорема Пифагора для чайников)))Скачать
Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !Скачать
7 класс, 35 урок, Некоторые свойства прямоугольных треугольниковСкачать
8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать
Геометрия 7 Прямоугольные треугольникиСкачать
Видеоурок. 7 класс. Тема: "Прямоугольные треугольники"Скачать
Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать
Высота прямоугольного треугольникаСкачать
Свойства прямоугольного треугольника. Практическая часть. 7 класс.Скачать
Прямоугольный треугольник Полное досьеСкачать