Прямая mn касается окружности в точке k

Прямая mn касается окружности в точке k

Прямая касается окружности в точке K. Точка O — центр окружности. Хорда KM образует с касательной угол, равный 83°. Найдите величину угла OMK. Ответ дайте в градусах.

Угол, образованный хордой и касательной равен половине дуги, которую он заключает, поэтому величина дуги MK равна 2 · 83° = 166°. Угол MOK — центральный, поэтому он равен величине дуги, на которую опирается. Значит, угол MOK равен 166°. В треугольнике OMK стороны OK и OM равны как радиусы окружности, поэтому треугольник OMK — равнобедренный, следовательно, углы при основании равны. Сумма углов треугольника равна 180°, поэтому ∠OKM = ∠OMK = (180° − ∠KOM)/2 = (180° − 166°)/2 = 7°.

Приведём другое решение.

Найдём угол OKM: OKM = 90° − 83° = 7°. Треугольник OMK — равнобедренный, поэтому угол OMK равен углу OKM и равен 7°

Видео:Касательные к окружности с центром O в точках A и B ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Касательные к окружности с центром O в точках A и B ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Задание №1205

Видео:Через точку A, лежащую вне окружности, проведены две прямые.Скачать

Через точку A, лежащую вне окружности, проведены две прямые.

Условие

Две окружности касаются внешним образом в точке P . Прямая MN касается первой окружности в точке M , а второй — в точке N .

а) Докажите, что triangle MNP прямоугольный.

б) Найдите площадь triangle MNP, если известно, что радиусы окружностей равны 4 и 16 .

Видео:Геометрия Прямая AB касается окружности с центром O в точке C, AC = BC. Докажите, что OA = OBСкачать

Геометрия Прямая AB касается окружности с центром O в точке C, AC = BC. Докажите, что OA = OB

Решение

а) Пусть O_1 и O_2 — центры касающихся окружностей. Через точку P проведём общую касательную заданных окружностей и обозначим через Q точку пересечения этой касательной с прямой MN .

Прямая mn касается окружности в точке k

По свойству касательных, проведённых к окружности, будем иметь: QM=QP, QN=QP. Значит, точки M , N и P равноудалены от точки Q , следовательно, angle MPN является вписанным в некоторую окружность с центром в точке Q и радиусом R=MQ. При этом angle MPN опирается на диаметр MN , а значит, angle MPN=90^. Отсюда triangle MNP является прямоугольным.

б) Пусть O_1 — центр окружности радиуса 4 , а O_2 — центр окружности радиуса 16 .

Рассмотрим MNO_2O_1: прямая MN — касательная к исходным окружностям, O_1M и

O_2N — радиусы, следовательно, O_1M perp MN и O_2N perp MN. Отсюда O_1M parallel O_2N, а значит MNO_2O_1 — прямоугольная трапеция.

Точка касания двух окружностей лежит на линии их центров, поэтому отрезок

O_1O_2 пересекает касательную PQ в точке P , следовательно, O_1P=O_1M=4, O_2P=O_2N=16, O_1O_2=O_1P+O_2P=4+16=20.

Проведём из точки P перпендикуляр PH к отрезку MN .

Приведем отрезок O_1Kperp NO_2, Kin NO_2, получим прямоугольник MNKO_1, в котором MN=O_1K и KN=O_1M=4, а также прямоугольный triangle O_1KO_2, в котором KO_2=NO_2-NK=16-4=12.

Следовательно, по теореме Пифагора O_1K= sqrt = sqrt = 16, MN-O_1K=16.

MH равна высоте треугольника MPO_1, опущенной на сторону MO_1.

NH равна высоте треугольника NPO_2, опущенной на сторону NO_2.

Видео:✓ Простое решение красивой геометрии | Планиметрия | Физтех-2021. Математика | Борис ТрушинСкачать

✓ Простое решение красивой геометрии | Планиметрия | Физтех-2021. Математика  | Борис Трушин

Окружность. Касательная к окружности.

Прямая (MN), имеющая с окружностью только одну общую точку (A), называется касательной к окружности.

Прямая mn касается окружности в точке k

Общая точка называется в этом случае точкой касания.

Возможность существования касательной, и притом проведенной через любую точку окружности, как точку касания, доказывается следующей теоремой.

Теорема.

Если прямая перпендикулярна к радиусу в его конце, лежащем на окружности, то эта прямая — касательная.

Прямая mn касается окружности в точке k

Пусть O — центр некоторого круга и OA какой-нибудь его радиус. Через его конец A проведем MNOA.Требуется доказать, что прямая MNкасательная, т.е. что эта прямая имеет с окружностью только одну общую точку A.

Допустим противное: пусть MN имеет с окружностью еще другую общую точку, например B. Тогда прямая OB была бы радиусом и, следовательно, равнялась бы OA.

Но этого быть не может, так как, если OA — перпендикуляр, то OB должна быть наклонной к MN, а наклонная больше перпендикуляра.

Обратная теорема.

Если прямая касательная к окружности, то радиус, проведенный в точку касания, перпендикулярен к ней.

Следствие.

Через всякую данную на окружности точку можно провести касательную к этой окружности и притом только одну, так как через эту точку можно провести перпендикуляр, и притом только один, к радиусу, проведенному в нее.

Теорема.

Касательная параллельная хорде, делит в точке касания дугу, стягиваемую хордой, пополам.

Пусть прямая AB касается окружности в точке M и параллельна хорде СD. Требуется доказать, что ∪CM= ∪MD.

Проведя через точку касания диаметр ME, получаем: EMAB и следовательно, EMСD. Поэтому СM=MD.

Через данную точку провести касательную к данной окружности.

Если данная точка находится на окружности, то проводят через нее радиус и через конец радиуса перпендикулярную прямую. Эта прямая будет искомой касательной.

Рассмотрим тот случай, когда точка дана вне круга.

Прямая mn касается окружности в точке k

Пусть требуется провести к окружности с центром O касательную через точку A. Для этого из точки A, как из центра, описываем дугу радиусом AO, а из точки O, как центра, пересекаем эту дугу в точках B и С раствором циркуля, равным диаметру данного круга.

Проведя затем хорды OB и , соединим точку A с точками D и E, в которых эти хорды пересекаются с данной окружностью. Прямые AD и AEкасательные к окружности O. Действительно, из построения видно, что треугольники AOB и AOС равнобедренные (AO = AB =AС) с основаниями OB и , равными диаметру круга O.

Так как OD и OE — радиусы, то Dсередина OB, а E — середина , значит AD и AEмедианы, проведенные к основаниям равнобедренных треугольников, и потому перпендикулярны к этим основаниям. Если же прямые DA и EA перпендикулярны к радиусам OD и OE, то они — касательные.

Следствие.

Две касательные, проведенные из одной точки к окружности, равны и образуют равные углы с прямой, соединяющей эту точку с центром.

Так AD=AE и ∠OAD = ∠OAE потому, что прямоугольные треугольники AOD и AOE, имеющие общую гипотенузу AO и равные катеты OD и OE (как радиусы), равны. Заметим, что здесь под словом “касательная” подразумевается собственно “отрезок касательной” от данной точки до точки касания.

🔍 Видео

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

№1,17 | Все теория по планиметрии за 4 часа | Решаем все прототипы №1 из ФИПИСкачать

№1,17 | Все теория по планиметрии за 4 часа | Решаем все прототипы №1 из ФИПИ

На окружности отмечены точки A и B так, что меньшая дуга AB равна 92 градуса. Прямая BC касается окрСкачать

На окружности отмечены точки A и B так, что меньшая дуга AB равна 92 градуса. Прямая BC касается окр

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

#32. Регион ВсОШ 2023, 9.8Скачать

#32. Регион ВсОШ 2023, 9.8

Уравнение окружности (1)Скачать

Уравнение окружности (1)

Профильный ЕГЭ 2024. Задача 16. Касающиеся окружностиСкачать

Профильный ЕГЭ 2024. Задача 16. Касающиеся окружности

Отрезки касательных из одной точки до точек касания окружности равны | Окружность | ГеометрияСкачать

Отрезки касательных из одной точки до точек касания окружности равны | Окружность |  Геометрия

2023 На окружности с центром в точке О отмечены точки А и Б так что угол аоб равен 45Скачать

2023 На окружности с центром в точке О отмечены точки А и Б так что угол аоб равен 45

Геометрия Вписанная окружность треугольника ABC касается сторон AB BC и AC в точках M N и KСкачать

Геометрия Вписанная окружность треугольника ABC касается сторон AB BC и AC в точках M N и K

Окружность касается. Красота неземная! ЕГЭ, ЦТ, ЗНО!Скачать

Окружность касается. Красота неземная! ЕГЭ, ЦТ, ЗНО!

Параметр. Серия 12. Решение задач с окружностями. Касание окружности и прямойСкачать

Параметр. Серия 12. Решение задач с окружностями. Касание окружности и прямой

🔴 В окружности с центром O отрезки AC и BD ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать

🔴 В окружности с центром O отрезки AC и BD ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРА

№147. На окружности с центром О отмечены точки А и В так, что угол АОВ — прямой. Отрезок ВССкачать

№147. На окружности с центром О отмечены точки А и В так, что угол АОВ — прямой. Отрезок ВС

ОГЭ. Математика. Задание 26 | Прямоугольная трапеция и окружность | Борис Трушин |Скачать

ОГЭ. Математика. Задание 26 | Прямоугольная трапеция и окружность | Борис Трушин |

Точка O – центр окружности, на которой лежат точки ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Точка O – центр окружности, на которой лежат точки ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА
Поделиться или сохранить к себе: