Проекция треугольника с вырезом

Чертежик

Метки

Проекция треугольника с вырезом

Проекция треугольника с вырезом

Видео:Как начертить КОНУС С ВЫРЕЗОМ (чертеж + аксонометрия)Скачать

Как начертить КОНУС С ВЫРЕЗОМ (чертеж + аксонометрия)

Построение третьего вида и изометрии с вырезом четверти

Построение третьего вида и изометрии с вырезом четверти заключается в определении и построении видимых и невидимых линий, которые необходимы для обозначения выреза данной фигуры.

Для того чтобы приступить необходимо задание. В качестве примера было выбрано это задание:

Проекция треугольника с вырезом

Рассмотрим более подробно шаг за шаг выполнение этого задания. Чертеж выполняется в следующей последовательности:

1.) Чертим вид спереди и вид сверху согласно заданию, указываем видимые и невидимые линии, затем переносим вспомогательные линии из вида сверху на вид слева. Вспомогательные линии строятся из крайних точек фигуры.

Проекция треугольника с вырезом2.) Чертим вспомогательные линии из вида спереди на вид слева.

Проекция треугольника с вырезом3.) Соединяем точки, полученные в результате пересечения вспомогательных линий.

Проекция треугольника с вырезом

Проекция треугольника с вырезом4.) Чертим третий вид с соответствующими линиями чертежа, прочерчивая видимые и невидимые линии.

Проекция треугольника с вырезом5.) Смотрим где есть пустоты в детали согласно линии на рисунке снизу и обозначаем их.

Проекция треугольника с вырезом6.) Строим вырез согласно линии, указанной на рисунке. Смотрим где есть пустота и обозначаем ее.

Проекция треугольника с вырезом7.) Обозначаем полую часть и неполую, т.е. чертим «штриховку».

Проекция треугольника с вырезом8.) Приступаем к построению изометрии с вырезом, для этого необходимо начертить осевые линии.

Проекция треугольника с вырезом9.) Как из видим из рисунка, размеры расположенные по осям на трех видах переносим на вид изометрии. Для лучшего представления следует начать с узора выреза.

Проекция треугольника с вырезом Проекция треугольника с вырезом10.) Применяя методы построения овала и переноса линий на вид изометрии строим остальную часть детали. Проекция треугольника с вырезом11.) Затем обводим соответствующими линиями деталь.Проекция треугольника с вырезом

изометрия с вырезом четверти

12.) Указываем штриховыми линиями ту часть, которую вырезали.

Проекция треугольника с вырезом

Пример решения этого задания имеет общий принцип построения для всех заданий подобного вида.

В виду того что при выполнении подобных заданий студентами все равно допускаются ошибки, мои вышеперечисленные пошаговые подсказки может не каждый поймет, для таких случаев я предлагаю просмотреть видео, в котором задание решается последовательно с указанием всех линий, показано как перенести размеры из трех видовых проекций на вид изометрии.

Но все же чтобы закрепить необходимо выполнить самостоятельно подобные задания несколько раз.

Пример выполненного чертежа смотрите здесь.

Видео:Построение недостающих проекции сквозного отверстия в сфереСкачать

Построение недостающих проекции сквозного отверстия в сфере

Построение вырезов на геометрических телах

Пример 1. Построить три проекции цилиндра с вырезом (рис. 147).

Проекция треугольника с вырезомПроекция треугольника с вырезом

Отмечаем характерные точки выреза А, В, С, Д, Е, F, а также произвольную точку к для построения профильной проекции части эллипса. Горизонтальные проекции точек отмечаем на горизонтальном очерке цилиндра, так как горизонтальная проекция боковой поверхности цилиндра совпадает с горизонтальным очерком (рис .148)

Проекция треугольника с вырезом

Построение профильной проекции выреза показано на рис. 149. Для этого целесообразно ось x 12 провести через ось симметрии горизонтальной проекции,а ось x 23 через профильную ось симметрии.

Проекция треугольника с вырезом

Пример 2. Построить три проекции конуса с вырезом (рис. 150).

Проекция треугольника с вырезомПроекция треугольника с вырезом

Проекция треугольника с вырезом

Отмечаем характерные точки вареза А, В, С, Е, K, а также произвольную точку D для построения части эллипса. Горизонтальные проекции точек отмечаем на образующих конуса и вспомогательных окружностях (рис. 151).

Проекция треугольника с вырезом

На рис. 152 показано построение профильной проекции конуса с вырезом.Для этого целесообразно ось x 12 провести через ось симметрии горизонтальной проекции, а ось x 23 через профильную ось симметрии.

Пример 3. Построить три проекции вырезе на призме (рис. 153).

Проекция треугольника с вырезом Проекция треугольника с вырезом

Решение показано на рис. 154

Проекция треугольника с вырезом

Пример 4. Построить три проекции выреза на пирамиде (рис. 155).

Проекция треугольника с вырезом Проекция треугольника с вырезом

Отмечаем фронтальные проекции характерных точек выреза – это точки 12, 22, 32, 42, 52, 62. Для нахождения горизонтальных проекций точек 4 и 5 проводим по поверхности пирамиды две вспомогательные линии, параллельные основанию пирамиды ABC. Горизонтальные проекции этих линий являются треугольниками, параллельными горизонтальной проекции основания А1В1С1. На этих треугольниках отмечаем горизонтальные проекции точек 4 и 5 (рис. 156).

Проекция треугольника с вырезом

Затем строим профильную проекцию пирамиды и точек выреза. Для этого оси целесообразно провести как показано на рис. 157.

Проекция треугольника с вырезом

Пример 5. Построить три проекции выреза на сфере (рис. 158).

Проекция треугольника с вырезом Проекция треугольника с вырезом

Вырез образован двумя фронтально-проецирующими плоскостями α и τ, горизонтальной плоскостью φ, двумя профильными плоскостями β и γ. Горизонтальная плоскость пересекает поверхность сферы по части окружности, ограниченной прямой. Фронтально-проецирующая плоскость пересекают поверхность сферы по окрухностям, которые на горизонтальной и профильной плоскости проецируются как части эллипсов. Профильная плоскость пересечет поверхность сферы по части окружности, которая на профильной плоскости спроецируется как часть окружности (рис. 159).

Проекция треугольника с вырезом

Построение профильной проекции показано на рис. 160

Видео:Пересечение многогранников. Пирамида с призматическим вырезом.Скачать

Пересечение многогранников. Пирамида с призматическим вырезом.

Построить три проекции тела с вырезом

Пример 1. Вырез на конусе (рис.142).

Проекция треугольника с вырезомПроекция треугольника с вырезомРис.142

Вырез произведен двумя плоскостями. Одна проходит через вершину конуса и рассечет его поверхность по образующим. Вторая плоскость – фронтально-проецирующая, линия пересечения – часть эллипса, ограниченная прямой принадлежащей линии пересечения плоскостей.

1. Отметим фронтальные проекции характерных точек для построения выреза – А”, В”, С”, M»,N» (рис. 143).

2. Точки D и Е выбраны произвольно для построения эллипса, т.к. линия среза от А до СN представляет собой часть эллипса.

3. Найдем горизонтальные проекции точек А, В, С, D, Е, N. Точки лежат на поверхности конуса, а значит, они лежат на линиях, принадлежащих поверхности конуса. Горизонтальные проекции точек М и В, D и E найдены на окружностях, принадлежащих поверхности конуса. Точки С и N – на образующих S1 и S2.

4. Соединяем полученные горизонтальные проекции. S’С’ и S’N‘ – прямые, C’, B’, D’, A’, E’, M’, N’ – кривая линия – часть эллипса (рис. 142).

Рис.143 Проекция треугольника с вырезомПроекция треугольника с вырезомРис.144

Строим профильную проекцию конуса и профильные проекции точек. Соединяем их (рис.145).

Проекция треугольника с вырезом

Пример 2. Вырез на цилиндре (рис.146).

Проекция треугольника с вырезомПроекция треугольника с вырезом

Вырез произведен тремя плоскостями. Наклонные фронтально-проецирующие плоскости рассекут цилиндр по части эллипса, ограниченного прямой. Плоскость, параллельная оси вращения, пересекает поверхность цилиндра по образующим.

1. Отметим на фронтальной проекции выреза фронтальные проекции A»,F»,G»,K»,L»,P». Характерные точки D»,E» ,M»,N» – на оси симметрии цилиндра, B»,C»,T»,V » – отмечены произвольно на линии, принадлежащей поверхности цилиндра. Все точки принадлежат боковой поверхности цилиндра, которая проецируется в окружность на горизонтальной плоскости проекций. Поэтому все горизонтальные проекции точек принадлежат этой окружности (рис.147).

Проекция треугольника с вырезомРис.147

Найдем профильные проекции всех точек. Затем полученные точки соединяем. Линия GECABDF – часть эллипса, FK и GL отрезки прямых, GF и KL-отрезки прямых, LNVPTMK – часть эллипса (рис. 148).

Проекция треугольника с вырезомРис.148

Пример 3. Вырез на призме (рис.149).

Проекция треугольника с вырезомРис.149 Проекция треугольника с вырезомHbc

Пример 4. Вырез на пирамиде (рис.150).

Пример 5. Вырез на сфере (рис. 151

Проекция треугольника с вырезомПроекция треугольника с вырезомp>

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9122 – Проекция треугольника с вырезом| 7289 – Проекция треугольника с вырезомили читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Проекция треугольника с вырезом

Проекция треугольника с вырезом

Проекция треугольника с вырезом Проекция треугольника с вырезом

Видео:Лекция 4. Многогранники. Часть 4.Скачать

Лекция 4. Многогранники. Часть 4.

Пошаговое руководство решения задачи №6 — построение линии пересечения сферической поверхности от сквозного призматического выреза.

Необходимо построить линию пересечения сферической поверхности (шара) от сквозного призматического выреза, состоящего из четырех граней (проецирующих плоскостей). Фронтальная проекция линии пересечения заданных поверхностей (шара и многогранника) задана исходным чертежом, требуется построить ее в горизонтальную и профильную проекции.

Для решения такой задачи по начертательной геометрии необходимо знать:

— построение трех проекций сферической поверхности (шара) по заданным координатам, на комплексном чертеже;

— построение линии пересечения шаровой поверхности с гранным телом;

— частные случаи построения линии пересечения шаровой поверхности с проецирующей плоскостью.

Порядок решения Задачи

Проекция треугольника с вырезом

Рис.6.1

1. В правой части листа формата A3 наносятся оси координат и согласно варианту задания строится фронтальная, горизонтальная и профильная проекции сферы (шара) заданного радиуса.

По координатам точек, взятым из таблицы по своему варианту, наносятся вершины сквозного четырехгранного выреза во фронтальной проекции (рис.6.1).

2. Решение задачи заключается в построении горизонтальной и профильной проекции линии пересечения данного выреза.

Прежде чем приступить к построению этих проекций, необходимо вспомнить некоторые частные случаи сечений шаровой поверхности от проецирующей плоскости (сквозное отверстие можно рассматривать как гранное тело, образованное четырьмя плоскостями), а именно:

(а) если плоскость во фронтальной проекции рассекает шаровую поверхность параллельно экватору, то в горизонтальной проекции это сечение проецируется в виде окружности с радиусом, взятым в этом сечении от оси вращения шара до очерка, а в профильной проекции это сечение проецируется в виде прямой линии;

(b) если плоскость во фронтальной проекции рассекает шаровую поверхность перпендикулярно экватору, то в горизонтальной проекции это сечение проецируется в виде прямой линии, а в профильной — в виде окружности с радиусом, взятым тем же способом что и в первом случае;

(c) если плоскость во фронтальной проекции рассекает шаровую поверхность под некоторым (отличным от 0 и 90 градусов) углом к экватору, то в горизонтальной и фронтальной проекциях это сечение будет проецироваться в виде эллипса. Построение эллипса осуществляется по опорным (характерным) и некоторым промежуточным, взятым произвольно, точкам;

(d) все точки фронтальной проекции сферы, расположенные на очерке, в горизонтальной проекции будут проецироваться на экваторе, а в профильной — на главном меридиане;

(e) все точки фронтальной проекции сферы, расположенные на экваторе, в горизонтальной проекции будут проецироваться на очерке, а в профильной — на экваторе;

(f) все точки фронтальной проекции сферы, расположенные на главном меридиане, в горизонтальной проекции будут проецироваться также на главном меридиане, а в профильной — на очерке сферы.

Проекция треугольника с вырезом

Рис.6.2

3. С учетом приведенных частных случаев сечений построение выреза в горизонтальной и профильной проекциях не вызывает особых затруднений и начинается с определения характерных (опорных) точек сквозного выреза во фронтальной проекции. Этими точками являются А, В, С, D. Тогда берем проекцию стороны призмы BC и рассматриваем ее как проецирующую плоскость ’, рассекающую шар параллельно экватору, — строим в горизонтальной проекции окружность с радиусом r1 взятым в этой плоскости, от оси шара до очерка. Проецируем на эту окружность точки B’ и C, получаем B и C — их горизонтальные проекции. Вполне очевидно, что этих точек будет по две (точки входа и выхода), т.к. отверстие сквозное.

Аналогичным способом строится проекция сечения плоскости А’D. Берется радиус от оси сферы до очерка (разумеется не до точки A) и в горизонтальной проекции проводится окружность этим радиусом. Проецированием находятся проекции точек D (их будет две — точка входа и точка выхода) — D и D1 и промежуточной точки, расположенной на экваторе.

Проекция треугольника с вырезом

Рис.6.3

Сторона четырехугольника СD горизонтальной проекции проецируется в прямую линию, причем эта линия должна начинаться от очерка, т.к. во фронтальной проекции
она пересекает экватор шара и продолжается до точек С и D.

Проекция треугольника с вырезом

Рис.6.4

Горизонтальной проекцией сторон четырехугольника АВ будет эллипс, строим его по характерным (опорным) точкам. Проецируем точки, расположенные на меридиане, экваторе и очерке фронтальной проекции соответственно на меридиан, очерк и экватор горизонтальной проекции. Соединяя их по лекалу с уже имеющимися
проекциями точек B и B1, и получаем искомую проекцию эллипса.

4. Аналогичным способом строится третья профильная проекция данного выреза (вид слева), поэтому нет надобности в подробном изложении четырехугольника ВС и АD будут проецироваться в прямые линии, СD – в окружность, AB – в эллипс.

Проекция треугольника с вырезом

Рис.6.5

5. Заключительным этапом в решении задачи является определение видимости сторон сквозного выреза, которая определяется из расположения их на сопряженной плоскости проекций. Тогда видимыми точками и линиями в горизонтальной плоскости будут точки и линии, которые во фронтальной — расположены выше экватора и на профильной проекции видимыми будут точки и линии которые на фронтальной плоскости расположены левее меридианы.

Экватор и меридиан являются границами видимости. Точки и линии, расположенные ниже экватора и правее меридиана во фронтальной проекции, в горизонтальной и профильной проекциях будут невидимыми.

Пример 1. Построить три проекции цилиндра с вырезом (рис. 147).

Проекция треугольника с вырезомПроекция треугольника с вырезом

Отмечаем характерные точки выреза А, В, С, Д, Е, F, а также произвольную точку к для построения профильной проекции части эллипса. Горизонтальные проекции точек отмечаем на горизонтальном очерке цилиндра, так как горизонтальная проекция боковой поверхности цилиндра совпадает с горизонтальным очерком (рис .148)

Проекция треугольника с вырезом

Построение профильной проекции выреза показано на рис. 149. Для этого целесообразно ось x 12 провести через ось симметрии горизонтальной проекции,а ось x 23 через профильную ось симметрии.

Проекция треугольника с вырезом

Пример 2. Построить три проекции конуса с вырезом (рис. 150).

Проекция треугольника с вырезомПроекция треугольника с вырезом

Проекция треугольника с вырезом

Отмечаем характерные точки вареза А, В, С, Е, K, а также произвольную точку D для построения части эллипса. Горизонтальные проекции точек отмечаем на образующих конуса и вспомогательных окружностях (рис. 151).

Проекция треугольника с вырезом

На рис. 152 показано построение профильной проекции конуса с вырезом.Для этого целесообразно ось x 12 провести через ось симметрии горизонтальной проекции, а ось x 23 через профильную ось симметрии.

Пример 3. Построить три проекции вырезе на призме (рис. 153).

Проекция треугольника с вырезомПроекция треугольника с вырезом

Решение показано на рис. 154

Проекция треугольника с вырезом

Пример 4. Построить три проекции выреза на пирамиде (рис. 155).

Проекция треугольника с вырезомПроекция треугольника с вырезом

Отмечаем фронтальные проекции характерных точек выреза – это точки 12, 22, 32, 42, 52, 62. Для нахождения горизонтальных проекций точек 4 и 5 проводим по поверхности пирамиды две вспомогательные линии, параллельные основанию пирамиды ABC. Горизонтальные проекции этих линий являются треугольниками, параллельными горизонтальной проекции основания А1В1С1. На этих треугольниках отмечаем горизонтальные проекции точек 4 и 5 (рис. 156).

Проекция треугольника с вырезом

Затем строим профильную проекцию пирамиды и точек выреза. Для этого оси целесообразно провести как показано на рис. 157.

Проекция треугольника с вырезом

Пример 5. Построить три проекции выреза на сфере (рис. 158).

Проекция треугольника с вырезомПроекция треугольника с вырезом

Вырез образован двумя фронтально-проецирующими плоскостями α и τ, горизонтальной плоскостью φ, двумя профильными плоскостями β и γ. Горизонтальная плоскость пересекает поверхность сферы по части окружности, ограниченной прямой. Фронтально-проецирующая плоскость пересекают поверхность сферы по окрухностям, которые на горизонтальной и профильной плоскости проецируются как части эллипсов. Профильная плоскость пересечет поверхность сферы по части окружности, которая на профильной плоскости спроецируется как часть окружности (рис. 159).

Проекция треугольника с вырезом

Построение профильной проекции показано на рис. 160

Проекция треугольника с вырезом

Метрические задачи

Дата добавления: 2018-10-15 ; просмотров: 1914 | Нарушение авторских прав

📸 Видео

Треугольная призма. Ортогональные и изометрическая проекции. Урок 10.(Часть2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)Скачать

Треугольная призма. Ортогональные и изометрическая проекции. Урок 10.(Часть2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)

Лекция 5 Задача 4Скачать

Лекция 5 Задача 4

Построение недостающей проекции плоскости. Принадлежность прямой к плоскостиСкачать

Построение недостающей проекции плоскости. Принадлежность прямой к плоскости

Конус с вырезомСкачать

Конус с вырезом

Построение треугольника в трёх проекцияхСкачать

Построение треугольника в трёх проекциях

Изометрическая проекция треугольникаСкачать

Изометрическая проекция треугольника

Как начертить конус в объемеСкачать

Как начертить конус в объеме

СФЕРА с вырезомСкачать

СФЕРА с вырезом

Пересечение двух плоскостей. Плоскости в виде треугольникаСкачать

Пересечение двух плоскостей. Плоскости в виде треугольника

Треугольная пирамида. Проекции точек на гранях. Сечение. Урок23.(Часть2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)Скачать

Треугольная пирамида. Проекции точек на гранях. Сечение. Урок23.(Часть2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)

2 3 проекция точки на конусеСкачать

2 3 проекция точки на конусе

ПОСТРОИТЬ ПРОЕКЦИИ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКА ПО ЗАДАННЫМ УСЛОВИЯМ. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ.Скачать

ПОСТРОИТЬ ПРОЕКЦИИ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКА ПО ЗАДАННЫМ УСЛОВИЯМ. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ.

ПИРАМИДА в ИЗОМЕТРИИСкачать

ПИРАМИДА в ИЗОМЕТРИИ

Как начертить ПРИЗМУ ТРЕХГРАННУЮСкачать

Как начертить ПРИЗМУ ТРЕХГРАННУЮ

1.2 ПИРАМИДА. Геометрические тела.Скачать

1.2 ПИРАМИДА. Геометрические тела.

Определение натуральной величины треугольника АВС методом замены плоскостей проекцииСкачать

Определение натуральной величины треугольника АВС методом замены плоскостей проекции
Поделиться или сохранить к себе: