Признаки того что около четырехугольника можно описать окружность

Четырехугольники, вписанные в окружность. Теорема Птолемея
Признаки того что около четырехугольника можно описать окружностьВписанные четырехугольники и их свойства
Признаки того что около четырехугольника можно описать окружностьТеорема Птолемея

Видео:№708. Докажите, что можно описать окружность: а) около любого прямоугольника; б) около любойСкачать

№708. Докажите, что можно описать окружность: а) около любого прямоугольника; б) около любой

Вписанные четырёхугольники и их свойства

Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .

Признаки того что около четырехугольника можно описать окружность

Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .

Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .

Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.

Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).

Признаки того что около четырехугольника можно описать окружность

Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.

Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.

Теорема 2 доказана.

Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Признаки того что около четырехугольника можно описать окружность
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Признаки того что около четырехугольника можно описать окружность

ФигураРисунокСвойство
Окружность, описанная около параллелограммаПризнаки того что около четырехугольника можно описать окружностьОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромбаПризнаки того что около четырехугольника можно описать окружностьОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапецииПризнаки того что около четырехугольника можно описать окружностьОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоидаПризнаки того что около четырехугольника можно описать окружностьОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольникПризнаки того что около четырехугольника можно описать окружность

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Признаки того что около четырехугольника можно описать окружность
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Признаки того что около четырехугольника можно описать окружность

Окружность, описанная около параллелограмма
Признаки того что около четырехугольника можно описать окружностьОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
Признаки того что около четырехугольника можно описать окружностьОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
Признаки того что около четырехугольника можно описать окружностьОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
Признаки того что около четырехугольника можно описать окружностьОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
Признаки того что около четырехугольника можно описать окружность
Окружность, описанная около параллелограмма
Признаки того что около четырехугольника можно описать окружность

Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Окружность, описанная около ромбаПризнаки того что около четырехугольника можно описать окружность

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Окружность, описанная около трапецииПризнаки того что около четырехугольника можно описать окружность

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Окружность, описанная около дельтоидаПризнаки того что около четырехугольника можно описать окружность

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Произвольный вписанный четырёхугольникПризнаки того что около четырехугольника можно описать окружность

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Признаки того что около четырехугольника можно описать окружность

Признаки того что около четырехугольника можно описать окружность

где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Признаки того что около четырехугольника можно описать окружность

Видео:Как узнать, что около четырехугольника можно описать окружность?😍 #математика #математикаегэ #егэСкачать

Как узнать, что около четырехугольника можно описать окружность?😍 #математика #математикаегэ #егэ

Теорема Птолемея

Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.

Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).

Признаки того что около четырехугольника можно описать окружность

Докажем, что справедливо равенство:

Признаки того что около четырехугольника можно описать окружность

Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).

Признаки того что около четырехугольника можно описать окружность

Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Признаки того что около четырехугольника можно описать окружность

откуда вытекает равенство:

Признаки того что около четырехугольника можно описать окружность(1)

Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Вписанные и описанные четырехугольники

Вписанный четырехугольник — четырехугольник, все вершины которого лежат на одной окружности.
Очевидно, эта окружность будет называться описанной вокруг четырехугольника.

Описанный четырехугольник — такой, что все его стороны касаются одной окружности. В этом случае окружность вписана в четырехугольник.

На рисунке — вписанные и описанные четырехугольники и их свойства.

Признаки того что около четырехугольника можно описать окружность

Ты нашел то, что искал? Поделись с друзьями!

Посмотрим, как эти свойства применяются в решении задач ЕГЭ.

. Два угла вписанного в окружность четырехугольника равны и . Найдите больший из оставшихся углов. Ответ дайте в градусах.

Признаки того что около четырехугольника можно описать окружность

Сумма противоположных углов вписанного четырехугольника равна . Пусть угол равен . Тогда напротив него лежит угол в градусов. Если угол равен , то угол равен .

. Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как . Найдите большую сторону этого четырехугольника, если известно, что его периметр равен .

Признаки того что около четырехугольника можно описать окружность

Пусть сторона равна , равна , а . По свойству описанного четырехугольника, суммы противоположных сторон равны, и значит,

Получается, что равна . Тогда периметр четырехугольника равен . Мы получаем, что , а большая сторона равна .

. Около окружности описана трапеция, периметр которой равен . Найдите ее среднюю линию.

Признаки того что около четырехугольника можно описать окружность

Мы помним, что средняя линия трапеции равна полусумме оснований. Пусть основания трапеции равны и , а боковые стороны — и . По свойству описанного четырехугольника,
, и значит, периметр равен .
Получаем, что , а средняя линия равна .

Еще раз повторим свойства вписанного и описанного четырехугольника.

Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны .

Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин его противоположных сторон равны.

Докажите эти утверждения. Это задание особенно полезно тем, кто решает задачи второй части профильного ЕГЭ по математике.

Видео:Свойство четырехугольника, в который можно вписать окружностьСкачать

Свойство четырехугольника, в который можно вписать окружность

Около четырехугольника можно описать окружность

Теорема (свойство вписанного четырёхугольника)

Сумма противолежащих углов вписанного четырёхугольника равна 180°.

Признаки того что около четырехугольника можно описать окружностьДано: ABCD вписан в окр. (O; R)

∠A — вписанный угол, опирающийся на дугу BCD.

∠C — вписанный угол, опирающийся на дугу DAB.

Так как вписанный угол равен половине дуги, на которую он опирается, то

Признаки того что около четырехугольника можно описать окружность

Признаки того что около четырехугольника можно описать окружность

Признаки того что около четырехугольника можно описать окружность

Признаки того что около четырехугольника можно описать окружность

Признаки того что около четырехугольника можно описать окружность

Что и требовалось доказать.

Теорема (признак вписанного четырёхугольника)

Около четырёхугольника можно описать окружность, если сумма его противолежащих углов равна 180°.

Дано: ABCD — четырёхугольник,

Доказать: ABCD можно вписать в окружность

Опишем окружность около треугольника ABC и докажем, что точка D лежит на этой окружности.

Доказательство будем вести методом от противного.

Предположим, что точка D не лежит на описанной около треугольника ABD окружности. Тогда D лежит либо внутри этой окружности, либо вне её.

Признаки того что около четырехугольника можно описать окружностьПусть точка D лежит внутри окружности и луч AD пересекает окружность в точке E.

В этом случае четырёхугольник ABCE — вписанный, и сумма его противолежащих углов равна 180°: ∠B+∠E=180°.

По условию, ∠B+∠D=180°. Отсюда следует, что ∠D=∠E.

Но угол D — внешний угол треугольника DCE при вершине D.

Так как внешний угол треугольника равен сумме двух внутренних не смежных с ним углов, то

∠ADC=∠DEC+∠DCE, то есть угол D не может быть равным углу E. Пришли к противоречию. А значит, точка D не может лежать внутри окружности, описанной около треугольника ABC.

Признаки того что около четырехугольника можно описать окружностьПредположим, что точка D лежит вне описанной около треугольника ABC окружности.

Луч AD пересекает окружность в точке E.

Тогда ABCE — вписанный четырёхугольник и ∠B+∠E=180°.

По условию, ∠B+∠D=180°. Получаем, что ∠D=∠E.

Но угол E — внешний угол треугольника ECD при вершине E. А значит,

∠AEC=∠EDC+∠DCE, то есть углы D и E не могут быть равными. Противоречие получили потому, что предположили, что точка D лежит вне окружности.

Так как точка D не может лежать внутри либо вне описанной около треугольника ABC окружности, то D лежит на этой окружности. Это значит, что около четырёхугольника ABCD можно описать окружность.

Что и требовалось доказать.

На основании свойства и признака вписанного четырёхугольника сформулируем необходимое и достаточное условие вписанного четырёхугольника.

Теорема (Необходимое и достаточное условие вписанного четырёхугольника)

Около четырёхугольника можно описать окружность тогда и только тогда, когда сумма уго противолежащих углов равна 180°.

🎦 Видео

Окружность, описанная около четырёхугольникаСкачать

Окружность, описанная около четырёхугольника

3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4Скачать

8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4

Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать

Описанная и вписанная окружности четырехугольника - 8 класс геометрия

8 класс. Четырехугольник и окружностьСкачать

8 класс.  Четырехугольник  и окружность

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Свойство и признак вписанного четырехугольникаСкачать

Свойство и признак вписанного четырехугольника

ЧЕТЫРЕХУГОЛЬНИК и ОКРУЖНОСТЬ | ЕГЭ Математика | @matematikajСкачать

ЧЕТЫРЕХУГОЛЬНИК и ОКРУЖНОСТЬ | ЕГЭ Математика | @matematikaj

Вписанная и описанная окружность в четырехугольник.Скачать

Вписанная и описанная окружность  в четырехугольник.

Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

Вписанный в окружность четырёхугольник.Скачать

Вписанный в окружность четырёхугольник.

5 Описанная окружность около четырехугольника. СвойствоСкачать

5 Описанная  окружность около четырехугольника. Свойство

вписанный и описанный четырехугольникСкачать

вписанный и описанный четырехугольник

Свойство и признак вписанного четырехугольникаСкачать

Свойство и признак вписанного четырехугольника
Поделиться или сохранить к себе: