Конспект
Отметим точки A, B и зададим некоторый вектор а. Отложим вектор а от каждой из точек. При этом точка А отображается в точку А1, точка В отображается в точку В1. Таким образом вектор АА1 равен вектору ВВ1 и равны вектору а. Этот вид отображения плоскости на себя называется параллельным переносом.
Проведем отрезок АВ. Отложим вектор р от точек А и В. При этом точка А отображается в точку А1, точка В отображается в точку В1. Проведем отрезок А1В1. Отрезок АВ отображается на отрезок А1В1 при параллельном переносе на вектор р.
Построим треугольник ABC и задаем некоторый вектор а. Отложим вектор р от каждой из точек А, В, С. При этом точка А отображается в точку А1, точка В отображается в точку В1, точка С отображается в точку С1. Таким образом векторы АА1 = ВВ1 = СС1 и равны вектору а. Соединим отрезками точки А1, В1, С1. Треугольник АВС отображается на треугольник А1В1С1 при параллельном переносе на вектор а.
Сформулируем определение. Параллельным переносом на вектор р называется отображение плоскости на себя, при котором каждая точка М отображается в такую точку М1, что вектор ММ1 = р. Является ли параллельный перенос движением – отображением плоскости на себя, сохраняющим расстояние?
Пусть при параллельном переносе на вектор а точки M и N отображаются в точки M1 и N1. Так как вектор MM1 равен вектору a и вектор NN1 равен вектору a, то векторы MM1 и NN1 равны, т.е. MM1 = NN1, MM1 ║ NN1 следовательно, четырехугольник – параллелограмм, т.е. MN = M1N1. Значит, расстояние не изменяется. Таким образом доказали, что параллельный перенос является движением. Отметим следующие свойства.
При параллельном переносе:
1) отрезок переходит в равный ему отрезок;
2) угол переходит в равный ему угол;
3) окружность переходит в равную ей окружность;
4) любой многоугольник переходит в равный ему многоугольник;
5) параллельные прямые переходят в параллельные прямые;
6) перпендикулярные прямые переходят в перпендикулярные прямые.
Чтобы задать параллельный перенос достаточно задать некоторый вектор т.е. указать направление и расстояние.
- Параллельный перенос
- При параллельном переносе прямая отображается в отрезок
- Содержание
- Общие сведения о параллельном переносе
- Свойства параллельного переноса
- Повторение темы о параллельном переносе
- Свойства, которыми обладает параллельный перенос в пространстве
- Истрия и применение в науке
- Примеры из жизни
- 🎦 Видео
Видео:11 класс, 12 урок, Параллельный переносСкачать
Параллельный перенос
Параллельный перенос — это преобразование плоскости, при котором точки смещаются в одном и том же направлении на одно и то же расстояние.
Строгое определение параллельного переноса даётся либо через декартовы координаты, либо через вектор.
1) Введём на плоскости декартовы координаты x, y.
Параллельный перенос — это такое преобразование фигуры F, при котором её произвольная точка (x;y) переходит в точку (x+a; y+b), где a и b — некоторые числа, одинаковые для всех точек (x;y) фигуры F.
Формулы параллельного переноса
Если при параллельном переносе точка A(x;y) переходит в точку A1(x1;y1)
то параллельный перенос задаётся формулами:
Говорят также, что A1 является образом точки A при параллельном переносе на вектор (a; b). Точка A называется прообразом.
2) Параллельный перенос на данный вектор ā называется отображение плоскости на себя, при котором каждая точка A отображается в такую точку A1, то вектор AA1 равен вектору ā:
Свойства параллельного переноса
1) Параллельный перенос есть движение (то есть параллельный перенос сохраняет расстояние).
2) При параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние.
3) При параллельном переносе каждая прямая переходит в параллельную ей прямую (или в себя).
4) Каковы бы ни были точки A и A1, существует единственный параллельный перенос, при котором точка A переходит в точку A1.
В алгебре параллельный перенос широко используется для построения графиков функций.
Видео:Геометрия 9 класс (Урок№30 - Поворот.)Скачать
При параллельном переносе прямая отображается в отрезок
Параллельный перенос и его свойства
Видео:Геометрия 9 класс (Урок№29 - Параллельный перенос.)Скачать
Содержание
Видео:9 класс, 32 урок, Параллельный переносСкачать
Общие сведения о параллельном переносе
Наглядно параллельный перенос определяется как преобразование, при котором точки смещаются в одном и том же направлении на одно и то же расстояние (рис. 198). Такое определение не является математически строгим, потому что в нем употребляется выражение «в одном и том же направлении», которое само нуждается в точном определении. В связи с этим параллельному переносу мы дадим другое, отвечающее тому же наглядному представлению, но уже строгое определение.
Введем на плоскости декартовы координаты х, у. Преобразование фигуры F, при котором произвольная ее точка (х; у) переходит в точку (х + а; у + b), где а и b одни и те же для всех точек (х; у), называется параллельным переносом (рис. 199). Параллельный перенос задается формулами x’ = x + а, у’ = у + b.
Эти формулы выражают координаты х’, у’ точки, в которую переходит точка (х; у) при параллельном переносе.
Видео:Точка, прямая и отрезок. 1 часть. 7 класс.Скачать
Свойства параллельного переноса
Параллельный перенос есть движение.
Действительно, две произвольные точки А(х1; у1) к В (х2; у2) переходят при параллельном переносе в точки А’ (х1 +а; у1 + b), В'(х2 + а; y2+b). Поэтому
АВ 2 =(х2-х1) 2 + (у2-у1 ) 2
Отсюда АВ=А’В’. Таким образом, параллельный перенос сохраняет расстояния, а значит, является движением, что и требовалось доказать.
Название «параллельный перенос» оправдывается тем, что при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние.
Действительно, пусть точки A (x1; y1) и В (x2; y2) переходят в точки A'(x1+а; y1 + b) и В’ (х2 + а; y2 + b) (рис. 200). Середина отрезка АВ’ имеет координаты
Те же координаты имеет и середина отрезка А’В. Отсюда следует, что диагонали четырехугольника АА’В’В пересекаются и точкой пересечения делятся пополам. Значит, этот четырехугольник — параллелограмм. А у параллелограмма противолежащие стороны А А’ и ВВ’ параллельны и равны.
Заметим, что у параллелограмма АА’В’В параллельны и две другие противолежащие стороны — АВ и А ‘В’. Отсюда следует, что при параллельном, переносе прямая переходит в параллельную прямую (или в себя).
Замечание. В предыдущем доказательстве предполагалось, что точка В не лежит на прямой АА’. В случае, когда точка В лежит на прямой АА’, точка В’ тоже лежит на этой прямой, так как середина отрезка АВ’ совпадает с серединой отрезка ВА’ (рис. 201). Значит, все точки А, В, А’, В’ лежат на одной прямой. Далее,
Таким образом, в этом случае точки АиВ смещаются по прямой АВ на одно и то же расстояние а прямая АВ переходит в себя.
Видео:Параллельный переносСкачать
Повторение темы о параллельном переносе
Мы с вами уже познакомились с такой темой, как параллельный перенос. На этом уроке вы узнали, что такое преобразование на плоскости, где все точки перемещаются на одно и то же расстояние, считается параллельным переносом.
Из данного урока, каждому из вас стало понятно, что параллельный перенос является движением, так как при таком переносе любая прямая переходит в такую же параллельную ей прямую.
Если мы посмотрим на рисунок, то можем наглядно представить такое движение, как сдвиг площади в направлении данного вектора на его длину.
Видео:Видеоурок "Преобразование координат"Скачать
Свойства, которыми обладает параллельный перенос в пространстве
• Во-первых, параллельный перенос является движением;
• Во-вторых, при выполнении этого действия все точки смещаются по параллельным прямым и притом на одно и то же расстояние;
• В-третьих, при таком переносе прямая имеет свойство переходить в такую же параллельную прямую или в себя саму;
• В-четвертых, независимо от того, какими точками были A и A’, но точка A переходит в точку A’.
• В-пятых, при таком переносе, т.е параллельном переносе в пространстве, в любом случае плоскость имеет свойство переходить в себя саму или же такую же параллельную ей плоскость.
Видео:Параллельный перенос. Симметрия. Поворот | МатематикаСкачать
Истрия и применение в науке
Как правило, в каждого понятия есть свой первооткрыватель, но автор параллельного переноса в пространстве, на жаль, нам неизвестен. А вот применение параллельного переноса в пространстве довольно широко. Как правило, такой перенос используют при преобразовании графической функции в математике, в механике, а также в кристаллографии.
Но если рассматривать трансляция или кристаллографию, то в этом случае перенос приобретает симметричное преобразование, в котором узел пространственной решётки должен совпасть с идентичным ближайшим узлом. В принципе, трансляцию можно отнести к частному случаю параллельного переноса, так как при сдвиге на определенный вектор ее свойства в данной системе не изменяются, а являются вектором трансляции и для нее свойственна трансляционная симметрия.
Видео:Параллельный переносСкачать
Примеры из жизни
В повседневной жизни мы с вами также постоянно сталкиваемся с примерами параллельного переноса в пространстве. Таким наглядным примером может быть, применяемая в строительной индустрии скользящая опалубка, этот процесс мы можем наблюдать и при перестановке мебели в квартире, да и следы от подошвы нам также напоминают о параллельном переносе в пространстве.
А также, параллельный перенос можно встретить и в таких необычных ситуациях:
А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений
🎦 Видео
Параллельный перенос. Координаты точек при параллельном переносе. Геометрия 8 классСкачать
8 класс, 9 урок, Осевая и центральная симметрияСкачать
Параллельные прямые циркулемСкачать
Тема: Движения. Урок: Движения на плоскости. Параллельный переносСкачать
Геометрия 11 класс (Урок№4 - Движения в пространстве.)Скачать
Геометрия 9 класс (Урок№28 - Отображение плоскости на себя. Понятие движения. Наложения и движения.)Скачать
9 класс, 29 урок, Отображение плоскости на себяСкачать
Движения. Симметрии. Параллельный перенос. Поворот. Урок 13. Геометрия 9 классСкачать
Урок 8. Параллельный перенос. Декартовы координаты на плоскости.Скачать
9 класс, 30 урок, Понятие движенияСкачать
Определение истинной величины треугольника АВС. Метод плоско-параллельного перемещенияСкачать