Матрицей поворота (или матрицей направляющих косинусов) называется ортогональная матрица, которая используется для выполнения собственного ортогонального преобразования в евклидовом пространстве. При умножении любого вектора на матрицу поворота длина вектора сохраняется. Определитель матрицы поворота равен единице.
Обычно считают, что, в отличие от матрицы перехода при повороте системы координат (базиса), при умножении на матрицу поворота вектора-столбца координаты вектора преобразуются в соответствии с поворотом самого вектора (а не поворотом координатных осей; то есть при этом координаты повернутого вектора получаются в той же, неподвижной системе координат). Однако отличие той и другой матрицы лишь в знаке угла поворота, и одна может быть получена из другой заменой угла поворота на противоположный; та и другая взаимно обратны и могут быть получены друг из друга транспонированием.
Матрица поворота в трёхмерном пространстве
Любое вращение в трехмерном пространстве может быть представлено как композиция поворотов вокруг трех ортогональных осей (например, вокруг осей декартовых координат). Этой композиции соответствует матрица, равная произведению соответствующих трех матриц поворота.
Матрицами вращения вокруг оси декартовой системы координат на угол α в трёхмерном пространстве являются:
Вращение вокруг оси x:
Вращение вокруг оси y:
Вращение вокруг оси z:
После преобразований мы получаем формулы:
По оси Х
x’=x;
y’:=y*cos(L)+z*sin(L) ;
z’:=-y*sin(L)+z*cos(L) ;
По оси Y
x’=x*cos(L)+z*sin(L);
y’=y;
z’=-x*sin(L)+z*cos(L);
По оси Z
x’=x*cos(L)-y*sin(L);
y’=-x*sin(L)+y*cos(L);
z’=z;
Все три поворота делаются независимо друг от друга, т.е. если надо повернуть вокруг осей Ox и Oy, вначале делается поворот вокруг оси Ox, потом применительно к полученной точки делается поворот вокруг оси Oy.
Положительным углам при этом соответствует вращение вектора против часовой стрелки в правой системе координат, и по часовой стрелке в левой системе координат, если смотреть против направления соответствующей оси. Правая система координат связана с выбором правого базиса (см. правило буравчика).
- Матрицы поворота, углы Эйлера и кватернионы (Rotation matrices, Euler angles and quaternions)
- Матрицы поворота и углы Эйлера
- Axis Angle представление вращения
- Кватернионы
- Основные операции над кватернионами
- Сложение, вычитание и умножение на скаляр.
- Норма и модуль
- Обратный кватернион или сопряжение ( conjugate )
- Инверсный (inverse) кватернион
- Тождественный кватернион
- Скалярное произведение
- Вращение 3d вектора
- Умножение кватернионов
- Конвертирование между кватернионом и Axis Angle представлением
- Конвертирование кватерниона в матрицу поворота
- Конвертирование матрицы поворота в кватернион
- Кватернионы, матрицы поворота и перепроецирование векторов между системами координат
- Исходные посылки
- Поворот вектора
- Перепроецирование вектора
Видео:Матрицы и векторыСкачать
Матрицы поворота, углы Эйлера и кватернионы (Rotation matrices, Euler angles and quaternions)
Объект обычно определяется в удобной для его описания локальной системе координат (ЛСК), а его положение в пространстве — в глобальной системе координат (ГСК).
В трёхмерном пространстве переход из одной СК в другую описывается в общем случае системой линейных уравнений:
Уравнения могут быть записаны через матрицы аффинных преобразований в однородных координатах одним из 2-х способов:
В ортогональных СК оси X, Y и Z взаимно перпендикулярны и расположены по правилу правой руки:
На рисунке справа большой палец определяет направление оси, остальные пальцы — положительное направление вращения относительно этой оси.
Все три вектора направлений есть единичными.
Ниже приводится единичная матрица для 2-х способов записи уравнений геометрических преобразований. Такая матрица не описывает ни перемещения, ни вращения. Оси ЛСК и ГСК совпадают.
Далее рассматривается матрица для второго способа матричной записи уравнений (матрица справа). Этот способ встречается в статьях значительно чаще.
При использовании матрицы вы можете игнорировать нижнюю строку. В ней всегда хранятся одни и те же значения 0, 0, 0, 1. Она добавлена для того, чтобы мы могли перемножать матрицы (напомню правило перемножения матриц и отмечу, что всегда можно перемножать квадратные матрицы). Подробнее см. Композиция матриц. Однородные координаты.
Остальные 12 значений определяют координатную систему. Первый столбец описывает компоненты направления оси X(1,0,0). Второй столбец задает направление оси Y(0,1,0), третий – оси Z (0,0,1). Последний столбец определяет положение начала системы координат (0,0,0).
Как будет выглядеть матрица Евклидового преобразования (преобразование движения) для задания ЛСК , с началом в точке (10,5,0) и повёрнутой на 45° вокруг оси Z глобальной СК, показано на рисунке.
Рассмотрим сначала ось X. Если новая система координат повернута на 45° вокруг оси z, значит и ось x повернута относительно базовой оси X на 45° в положительном направлении отсчета углов. Таким образом, ось X направлена вдоль вектора (1, 1, 0), но поскольку вектор системы координат должен быть единичным, то результат должен выглядеть так (0.707, 0.707, 0). Соответственно, ось Y имеет отрицательную компоненту по X и положительную по Y и будет выглядеть следующим образом (-0.707, 0.707, 0). Ось Z направления не меняет (0, 0, 1). Наконец, в четвертом столбце вписываются координаты точки начала системы координат (10, 5, 0).
Частным случаем матриц геометрических преобразований есть матрицы поворота ЛСК относительно базовых осей ГСК. Вектора осей ЛСК здесь выражены через синусы и косинусы углов вращения относительно оси, перпендикулярной к плоскости вращения.
От матрицы преобразований размером 4*4 можно перейти непосредственно к матрице поворота 3*3, убрав нижний ряд и правый столбец. При этом, система линейных уравнений записывается без свободных элементов (лямда, мю, ню), которые определяют перемещение вдоль осей координат.
Путем перемножения базовых матриц можно получать комбинированные вращения. Ниже рассмотрены возможности комбинировать вращениями через матрицы поворота на примерах работы с углами Эйлера.
Видео:Матрица поворотаСкачать
Матрицы поворота и углы Эйлера
От выбора осей и последовательности вращения зависит конечный результат. На рисунках отображена следующая последовательность вращения относительно осей ЛСК:
- оси Z (угол alpha);
- оси X (угол beta);
- оси Z (угол gamma).
Получил от читателя этой статьи вопрос: «Как понять, из каких углов поворота вокруг осей X,Y,Z можно получить текущее положение объекта, когда в качестве задания мы уже имеем повернутый объект, а нужно вывести его в это положение, последовательно повернув его из какого-то начального положения до полного совмещения с заданным?»
Мой ответ: «Если я правильно понял вопрос, то Вас интересует, как от начального положения перейти к заданному положению объекта, используя для этого элементарные базовые аффинные преобразования.
Начну с аналогии. Это как в шахматах. Мы знаем как ходит конь. Необходимо переместить его в результате многоходовки в нужную клетку на доске — при условии, что это возможно.
Подробно эта проблематика рассмотрена в статье Преобразование координат при калибровке роботов.
Умение правильно выбирать последовательность элементарных геометрических преобразований помогает в решении множества других задач (см. Примеры геометрических преобразований).»
Можно получить результирующую матрицу, которая определяет положение ГСК относительно ЛСК. Для этого необходимо перемножить матрицы с отрицательными углами в последовательности выполнения поворотов:
Почему знак угла поворота меняется на противоположный? Объяснение этому простое. Движение относительно. Абстрагируемся и представим, что ГСК меняет положение относительно неподвижной ЛСК. При этом направление вращения меняется на противоположное.
Перемножение матриц даст следующий результат:
Результирующую матрицу можно использовать для пересчета координат из ГСК в ЛСК:
Для пересчета координат из ЛСК в ГСК используется результирующая обратная матрица.
В обратной матрице последовательность поворота и знаки углов меняются на противоположные (в рассматриваемом примере снова на положительные) по сравнению с матрицей определения положения ГСК относительно ЛСК.
Перемножение матриц даст следующий результат:
Выше был рассмотрен случай определения углов Эйлера через вращение относительно осей ЛСК. То же взаимное положение СК можно получить, выполняя вращение относительно осей ГСК:
- оси z (угол (gamma+pi/2));
- оси y (угол угол beta);
- оси z (угол (-alpha)).
Определение углов Эйлера через вращение относительно осей ГСК позволяет также просто получить зависимости для пересчета координат из ЛСК в ГСК через перемножение матриц поворота.
В рамках рассматриваемой задачи вместо угла gamma в матрицe Az используем угол gamma+pi/2.
Также легко можно перейти к зависимостям для пересчета координат из ГСК в ЛСК.
Обратная матрица получается перемножением обратных матриц в обратном порядке по сравнению с прямым преобразованием. При этом каждая из обратных матриц вращения может быть получена заменой знака угла на противоположный.
Детально с теоретическими основами аффинных преобразований (включая и вращение) можно ознакомиться в статье Геометрические преобразования в графических приложениях
Примеры преобразований рассмотрены в статьях:
Видео:Трехмерные линейные трансформации | Сущность Линейной Алгебры, примечаниеСкачать
Axis Angle представление вращения
Выбрав подходящую ось (англ. rotation axis) и угол (англ. rotation angle) можно задать любую ориентацию объекта.
Обычно хранят ось вращения в виде единичного вектора и угол поворота вокруг этой оси в радианах или градусах.
q = [ x, y, z, w ] = [ v, w ]
В некоторых случаях удобно хранить угол вращения и ось в одном векторе. Направление вектора при этом совпадает с направлением оси вращения, а его длина равна углу поворота:
q = [ x, y, z]; w=sqrt (x*x +y*y +z*z)
В физике, таким образом хранят угловую скорость. Направление вектора совпадает с направлением оси вращения, а длина вектора равна скорости (в радианах в секунду).
Можно описать рассмотренные выше углы Эйлера через Axis Angle представление в 3 этапа:
q1 = [ 0, 0, 1, alpha]; q2 = [ 1, 0, 0, beta]; q3 = [ 0, 0, 1, gamma ]
Здесь каждое вращение выполняется относительно осей текущего положения ЛСК. Такое преобразование равнозначно рассмотренному выше преобразованию через матрицы поворота:
Возникает вопрос, а можно ли 3 этапа Axis Angle представления объединить в одно, подобно матрицам поворота? Попробуем решить геометрическую задачу по определению координат последнего вектора вращения в последовательности преобразований через Axis Angle представления:
q = [ x, y, z, gamma ]
Есть ли представление q= [x, y, z, gamma] композицией последовательности из 3-х этапов преобразований? Нет! Координаты x, y, z определяют всего лишь положение оси Z ЛСК после первого и второго этапов преобразований:
При этом ось Z, отнюдь, не есть вектор вращения для Axis Angle представления, которое могло бы заменить рассмотренные 3-х этапа преобразований.
Еще раз сформулирую задачу, которая математически пока не решена: «Необходимо найти значение угла (rotation angle) и положение оси (rotation axis), вращением относительно которой на этот угол можно заменить комбинацию из 3-х поворотов Эйлера вокруг осей координат».
К сожалению, никакие операции (типа объединения нескольких преобразований в одно) с Axis Angle представлениями нельзя выполнить. Не будем расстраиваться. Это можно сделать через кватернионы, которые также определяют вращение через параметры оси и угол.
Видео:§35 Формулы поворота координатных осейСкачать
Кватернионы
Кватернион (как это и видно по названию) представляет собой набор из четырёх параметров, которые определяют вектор и угол вращения вокруг этого вектора. По сути такое определение ничем не отличается от Axis Angle представления вращения. Отличия лишь в способе представления. Как же хранят вращение в кватернионе?
q = [ V*sin(alpha/2), cos(alpha/2) ]
В кватернионе параметры единичного вектора умножается на синус половины угла поворота. Четвертый компонент — косинус половины угла поворота.
Таблица с примерами значений кватернионов:
Представление вращения кватернионом кажется необычным по сравнению с Axis Angle представлением. Почему параметры вектора умножаются на синус половины угла вращения, четвертый параметр — косинус половины угла вращения, а не просто угол?
Откуда получено такое необычное представление кватерниона детально можно ознакомиться в статье Доступно о кватернионах и их преимуществах. Хотя программисту не обязательно знать эти детали, точно также как и знать, каким образом получены матрицы преобразования пространства. Достаточно лишь знать основные операции с кватернионами, их смысл и правила применения.
Видео:3D Game Engine | 21 | Матрица трансформацииСкачать
Основные операции над кватернионами
Кватернион удобно рассматривать как 4d вектор, и некоторые операции с ним выполняются как над векторами.
Видео:А.7.18 Вот: это поворот!!! (+ДЗ)Скачать
Сложение, вычитание и умножение на скаляр.
Смысл операции сложения можно описать как «смесь» вращений, т.е. мы получим вращение, которое находится между q и q’.
Что-то подобное сложению кватернионов выполнялось при неудачной попытке объединить 3 этапа Axis Angle представления.
Умножение на скаляр на вращении не отражается. Кватернион, умноженный на скаляр, представляет то же самое вращение, кроме случая умножения на 0. При умножении на 0 мы получим «неопределенное» вращение.
Пример сложения 2-х кватернионов:
Видео:Матрицы масштабирования, переноса и поворотаСкачать
Норма и модуль
Следует различать (а путают их часто) эти две операции:
Модуль (magnitude), или как иногда говорят «длина» кватерниона:
Через модуль кватернион можно нормализовать. Нормализация кватерниона — это приведение к длине = 1 (так же как и в векторах):
Видео:А.7.19 Поворот в трехмерном пространствеСкачать
Обратный кватернион или сопряжение ( conjugate )
Обратный кватернион задает вращение, обратное данному. Чтобы получить обратный кватернион достаточно развернуть вектор оси в другую сторону и при необходимости нормализовать кватернион.
Например, если разворот вокруг оси Y на 90 градусов = (w=0,707; x = 0; y = 0,707; z=0), то обратный = (w=0,707; x = 0; y = -0,707; z=0).
Казалось бы, можно инвертировать только компоненту W, но при поворотах на 180 кватернион представляется как (w=1; x = 0; y = 0; z=0), то есть, у него длина вектора оси = 0.
Фрагмент программной реализации:
Видео:Матрица переходаСкачать
Инверсный (inverse) кватернион
Существует такой кватернион, при умножении на который произведение дает нулевое вращение и соответствующее тождественному кватерниону (identity quaternion), и определяется как:
Видео:Линал 2.6. Умножение матрицы на векторСкачать
Тождественный кватернион
Записывается как q[0, 0, 0, 1]. Он описывает нулевой поворот (по аналогии с единичной матрицей), и не изменяет другой кватернион при умножении.
Видео:Поворот матрицы на 90 градусов 1/3Скачать
Скалярное произведение
Скалярное произведение полезно тем, что дает косинус половины угла между двумя кватернионами, умноженный на их длину. Соответственно, скалярное произведение двух единичных кватернионов даст косинус половины угла между двумя ориентациями. Угол между кватернионами — это угол поворота из q в q’ (по кратчайшей дуге).
Видео:Часть 3 Поворот вектораСкачать
Вращение 3d вектора
Вращение 3d вектора v кватернионом q определяется как
причем вектор конвертируется в кватернион как
и кватернион обратно в вектор как
Видео:A.7.28 Описание поворотов кватернионамиСкачать
Умножение кватернионов
Одна из самых полезных операций, она аналогична умножению двух матриц поворота. Итоговый кватернион представляет собой комбинацию вращений — сначала объект повернули на q, а затем на q’ (если смотреть из глобальной системы координат).
Примеры векторного и скалярного перемножения 2-х векторов векторное произведение — вектор: Скалярное произведение — число:
Пример умножения 2-х кватернионов:
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Конвертирование между кватернионом и Axis Angle представлением
В разделе Axis Angle представление вращения была сделана неудачная попытка объединить 3 Axis Angle представления в одно . Это можно сделать опосредовано. Сначала Axis Angle представления конвертируются в кватернионы, затем кватернионы перемножаются и результат конвертируется в Axis Angle представление.
Пример конвертирования произведения 2-х кватернионов в Axis Angle представление:
Фрагмент программы на C:
Видео:ИМРС 5.2 Матрица поворотаСкачать
Конвертирование кватерниона в матрицу поворота
Матрица поворота выражается через компоненты кватерниона следующим способом:
где
Проверим формулы конвертирования на примере конвертирования произведения 2-х кватернионов в матрицу поворотов:
Определяем элемент матрицы m[0][0] через параметры кватерниона:
Соответствующее произведению кватернионов (q1 и q2) произведение матриц поворотов было получено ранее (см. Матрицы поворота и углы Эйлера):
Как видим, результат m[0][0], полученный через конвертирование, совпал с значением в матрице поворота.
Фрагмент программного кода на С для конвертирования кватерниона в матрицу поворота:
При конвертировании используется только умножения и сложения, что является несомненным преимуществом на современных процессорах.
Часто для задания вращений используют только кватернионы единичной длины, но это не обязательно и иногда даже не эффективно. Разница между конвертированием единичного и неединичного кватернионов составляет около 6-ти умножений и 3-х сложений, зато избавит во многих случаях от необходимости нормировать (приводить длину к 1) кватернион. Если кусок кода критичен по скорости и вы пользуетесь только кватернионами единичной длины тогда можно воспользоваться фактом что норма его равна 1.
Видео:Видеоурок "Преобразование координат"Скачать
Конвертирование матрицы поворота в кватернион
Конвертирование матрицы в кватернион выполняется не менее эффективно, чем кватерниона в матрицу, но в итоге мы получим кватернион неединичной длины. Его можно нормализовать.
Фрагмент программного кода конвертирования матрицы поворота в кватернион:
Видео:Кинематика вращательного движения. Часть 2. Матрица поворота.Скачать
Кватернионы, матрицы поворота и перепроецирование векторов между системами координат
Пришлось это мне в последнее время поработать с задачами, где нужно было оперировать кватернионами и заниматься перепроецированием векторов в разные системы координат (это еще называется заменой базиса). Сначала по чужим формулам — причем с опечатками и даже, как выяснилось, с фактическими ошибками — а потом делать свои, по аналогии. И всё даже работало! Но сохранялся какой-то туман в понимании происходящего. А всё, как оказалось, из-за этих ошибок: их комбинация давала систему, в целом сохраняющую корректность, неверным путем таки достигался верный результат. Зато такая удача сильно мешала осознанию проблемы и прояснению природы феномена «верный итог при подозрительных формулах». При этом разбираться досконально времени все не было — работает же, числа выдает правильные, чего тебе еще надо, собака? Вперед, нужно больше золота кода! А вот сейчас пришел момент, когда я, похоже, окончательно всё понял, и хочу поделиться получившейся картинкой с окружающими. Вдруг кому пригодится, и себе памятка.
Заранее оговорюсь, что материал не претендует на академичность изложения, а скорее просто описывает удобный для запоминания способ интерпретации того, что происходит при перепроецировании векторов.
Стало быть, речь у нас пойдет в особенности о проекциях и поворотах.
Видео:Занятие 12. Векторы и матрицыСкачать
Исходные посылки
Описание кватернионов и матриц поворота как таковых опущу, предполагаю, что читатели знакомы с ними. Вектор здесь будет пониматься в его интуитивном представлении, как отрезок прямой в трехмерном пространстве, имеющий длину и направление. Исходное положение вектора будет иметь индекс «–», конечное — индекс «+».
Кватернионы и матрицы поворота могут быть использованы как для выполнения пространственного поворота векторов, так и для описания взаимной ориентации систем координат. В частности, для описания положения целевой системы координат относительно исходной: как нужно повернуть исходную, чтобы ее оси совпали с одноименными осями целевой. Матрица поворота (она же матрица ориентации, для случая описания взаимной ориентации систем координат) может быть получена из нормированного кватерниона ориентации по известным из литературы формулам. Обратное тоже верно: можно получить кватернион ориентации из матрицы.
Вектор , подлежащий повороту, задается величинами его проекций (длинами проекций) на оси исходной системы координат: три числа – проекции на три ортогональных оси . Получается матрица-столбец размерности 3х1, которая также называется вектором. Чтобы не смешивать в тексте подобную запись проекций вектора с интуитивным представлением о нем, я буду и дальше называть эту запись «матрицей-столбцом».
Видео:4.5 Поворот матрицы. "Поколение Python": курс для продвинутых. Курс StepikСкачать
Поворот вектора
Поворачивать вектор можно, как уже сказано, и с помощью матрицы, и с помощью кватерниона.
Поворот с использованием матрицы: матрица поворота умножается на исходную матрицу-столбец. На выходе имеем другую, результирующую матрицу-столбец:
Поворот с использованием кватерниона ориентации выполняется в два шага:
- Из исходной матрицы-столбца и кватерниона вычисляется промежуточная матрица-столбец , где – операция векторного произведения векторов;
- Вычисляется значение результирующей матрицы-столбца по формуле
Числа в результирующей матрице-столбце, полученной любым из этих способов — это проекции вектора в его новом, повернутом положении, на оси все той же исходной системы координат.
С поворотом вектора дело ясное, вопросов нет.
Видео:#11. Произведение матриц и векторов, элементы линейной алгебры | NumPy урокиСкачать
Перепроецирование вектора
А вот задача перепроецирования вектора из одной системы координат в другую несколько контринтуитивна. Формулировка задачи: необходимо узнать, как некоторый вектор, заданный в исходной системе координат, выглядит в целевой системе. Иначе говоря, по проекциям вектора на оси исходной системы узнать проекции вектора на оси целевой. При этом задан кватернион или матрица ориентации целевой системы относительно исходной.
Может показаться, что для решения этой задачи нужно просто повернуть вектор из исходной системы координат в целевую, пользуясь кватернионом или матрицей ориентации второй относительно первой. Однако это не так! Выполнив подобную операцию, мы узнаем только, как новый, повернутый вектор выглядит в осях все той же исходной системы, а это не то, что нас интересует .
Важно, однако, обратить внимание на то, что после проведения подобного поворота сам вектор окажется ориентирован относительно целевой системы координат так же, как он был до операции ориентирован относительно исходной. В этом кроется ключ к правильному ходу действий. Для получения проекций интересующего нас вектора на целевую систему координат нужно выполнить операцию «в обратную сторону»:
- Задать в целевой системе координат «временный» вектор с теми же величинами проекций на оси этой целевой системы, какие есть у интересующего нас («заданного») вектора на оси исходной системы. Таким образом, «временный» вектор будет ориентирован относительно целевой системы так же, как заданный вектор ориентирован относительно исходной;
- Определить ориентацию исходной системы относительно целевой. Здесь легко: нужная ориентация описывается либо кватернионом, сопряженным к имеющемуся (), либо матрицей , обратной по отношению к имеющейся; причем для матрицы ориентации, чей определитель всегда равен 1, обратная матрица совпадает с транспонированной , поэтому достаточно транспонировать имеющуюся матрицу ориентации;
- Повернуть «временный» вектор с использованием полученного кватерниона/матрицы. Вектор повернется относительно целевой системы координат так же, как относительно нее повернута исходная система. При этом, в силу всего сказанного ранее, а) «временный» вектор станет ориентирован уже относительно исходной системы так, как был ранее ориентирован относительно целевой, и, следовательно, точно совпадет с заданным вектором, и б) результатом операции будет матрица-столбец, описывающая, как теперь «временный» (а значит, и заданный) вектор выглядит в осях целевой системы координат.
Ура, это именно то, что нам нужно!
Кроме того, быстро становится очевидно, что с точки зрения реализации никакой «временный» вектор (в смысле «матрица-столбец») на самом деле не нужен: в ходе операции он никак не модифицируется, и при этом численно является копией исходного вектора. Так что, разумеется, можно спокойно брать сам исходный вектор и проводить операции с ним. Описание выше лишь подробнее иллюстрирует смысл происходящего.