Поток вектора электрической индукции через замкнутую поверхность

Поток вектора электрической индукции через замкнутую поверхность

Поток вектора напряженности электрического поля. Пусть небольшую площадку D S (рис.1.2) пересекают силовые линии электрического поля, направление которых составляет с нормалью n к этой площадке угол a . Полагая, что вектор напряженности Е не меняется в пределах площадки D S, определим поток вектора напряженности через площадку D S как

Поскольку густота силовых линий равна численному значению напряжённости E, то количество силовых линий, пересекающих площадку D S , будет численно равно значению потока D F E через поверхность D S . Представим правую часть выражения (1.3) как скалярное произведение векторов E и D S = n D S , где n – единичный вектор нормали к поверхности D S . Для элементарной площадки d S выражение (1.3) принимает вид

Через всю площадку S поток вектора напряженности вычисляется как интеграл по поверхности

Поток вектора электрической индукции через замкнутую поверхность

Поток вектора электрической индукции. Поток вектора электрической индукции определяется аналогично потоку вектора напряженности электрического поля

В определениях потоков заметна некоторая неоднозначность, связанная с тем, что для каждой поверхности можно задать две нормали противоположного направления. Для замкнутой поверхности положительной считается внешняя нормаль.

Теорема Гаусса. Рассмотрим точечный положительный электрический заряд q , находящийся внутри произвольной замкнутой поверхности S (рис. 1.3). Поток вектора индукции через элемент поверхности d S равен
Поток вектора электрической индукции через замкнутую поверхность (1.4)

Составляющую d SD = d S cos a элемента поверхности d S в направлении вектора индукции D рассматриваем как элемент сферической поверхности радиуса r, в центре которой расположен заряд q .

Поток вектора электрической индукции через замкнутую поверхность

Учитывая, что d SD / r 2 равен элементарному телесному углу d w , под которым из точки нахождения заряда q виден элемент поверхности d S, преобразуем выражение (1.4) к виду d F D = q d w / 4 p , откуда после интегрирования по всему окружающему заряд пространству, т. е. в пределах телесного угла от 0 до 4 p , получим

Поток вектора электрической индукции через замкнутую поверхность произвольной формы равен заряду, заключенному внутри этой поверхности.

Поток вектора электрической индукции через замкнутую поверхность

Если произвольная замкнутая поверхность S не охватывает точечный заряд q (рис. 1.4), то, построив коническую поверхность с вершиной в точке нахождения заряда, разделим поверхность S на две части: S1 и S2. Поток вектора D через поверхность S найдем как алгебраическую сумму потоков через поверхности S1 и S2:

Поток вектора электрической индукции через замкнутую поверхность.

Обе поверхности из точки нахождения заряда q видны под одним телесным углом w . Поэтому потоки равны

Поток вектора электрической индукции через замкнутую поверхность.

Поскольку при вычислении потока через замкнутую поверхность используется внешняя нормаль к поверхности, легко видеть, что поток Ф 1D 2D > 0. Суммарный поток Ф D = 0. Это означает, что поток вектора электрической индукции через замкнутую поверхность произвольной формы не зависит от зарядов, расположенных вне этой поверхности.

Если электрическое поле создаётся системой точечных зарядов q 1, q 2, ¼ , qn , которая охватывается замкнутой поверхностью S, то, в соответствии с принципом суперпозиции, поток вектора индукции через эту поверхность определяется как сумма потоков, создаваемых каждым из зарядов. Поток вектора электрической индукции через замкнутую поверхность произвольной формы равен алгебраической сумме зарядов, охваченных этой поверхностью:

Поток вектора электрической индукции через замкнутую поверхность(1.5)

Следует отметить, что заряды qi не обязательно должны быть точечными, необходимое условие — заряженная область должна полностью охватываться поверхностью. Если в пространстве, ограниченном замкнутой поверхностью S, электрический заряд распределен непрерывно, то следует считать, что каждый элементарный объём d V имеет заряд Поток вектора электрической индукции через замкнутую поверхность. В этом случае в правой части выражения (1.5) алгебраическое суммирование зарядов заменяется интегрированием по объёму, заключённому внутри замкнутой поверхности S:

Поток вектора электрической индукции через замкнутую поверхность(1.6)

Выражение (1.6) является наиболее общей формулировкой теоремы Гаусса: поток вектора электрической индукции через замкнутую поверхность произвольной формы равен суммарному заряду в объеме, охваченном этой поверхностью, и не зависит от зарядов, расположенных вне рассматриваемой поверхности. Теорему Гаусса можно записать и для потока вектора напряженности электрического поля :

Поток вектора электрической индукции через замкнутую поверхность.

Из теоремы Гаусса следует важное свойство электрического поля: силовые линии начинаются или заканчиваются только на электрических зарядах или уходят в бесконечность. Еще раз подчеркнем, что, несмотря на то, что напряжённость электрического поля E и электрическая индукция D зависят от расположения в пространстве всех зарядов, потоки этих векторов через произвольную замкнутую поверхность S определяются только теми зарядами, которые расположены внутри поверхности S.

Дифференциальная форма теоремы Гаусса. Отметим, что интегральная форма теоремы Гаусса характеризует соотношения между источниками электрического поля (зарядами) и характеристиками электрического поля (напряженностью или индукцией) в объеме V произвольной, но достаточной для формирования интегральных соотношений, величины. Производя деление объема V на малые объемы Vi , получим выражение

Поток вектора электрической индукции через замкнутую поверхность

справедливое как в целом, так и для каждого слагаемого. Преобразуем полученное выражение следующим образом:

Поток вектора электрической индукции через замкнутую поверхность (1.7)

и рассмотрим предел, к которому стремится выражение в правой части равенства, заключенное в фигурных скобках, при неограниченном делении объема V. В математике этот предел называют дивергенцией вектора (в данном случае вектора электрической индукции D):

Поток вектора электрической индукции через замкнутую поверхность

Дивергенция вектора D в декартовых координатах:

Поток вектора электрической индукции через замкнутую поверхность

Таким образом выражение (1.7) преобразуется к виду:

Поток вектора электрической индукции через замкнутую поверхность.

Учитывая, что при неограниченном делении сумма в левой части последнего выражения переходит в объемный интеграл, получим

Поток вектора электрической индукции через замкнутую поверхность

Полученное соотношение должно выполняться для любого произвольно выбранного объема V . Это возможно лишь в том случае, если значения подынтегральных функций в каждой точке пространства одинаковы. Следовательно, дивергенция вектора D связана с плотностью заряда в той же точке равенством

Поток вектора электрической индукции через замкнутую поверхность

или для вектора напряженности электростатического поля

Поток вектора электрической индукции через замкнутую поверхность.

Эти равенства выражают теорему Гаусса в дифференциальной форме.

Отметим, что в процессе перехода к дифференциальной форме теоремы Гаусса получается соотношение, которое имеет общий характер:

Поток вектора электрической индукции через замкнутую поверхность.

Выражение называется формулой Гаусса — Остроградского и связывает интеграл по объему от дивергенции вектора с потоком этого вектора сквозь замкнутую поверхность, ограничивающую объем.

1) В чем заключается физический смысл теоремы Гаусса для электростатического поля в вакууме

2) В центре куба находится точечный заряд q . Чему равен поток вектора Е:

а) через полную поверхность куба; б) через одну из граней куба.

Изменятся ли ответы, если:

а) заряд находится не в центре куба, но внутри его ; б) заряд находится вне куба.

3) Что такое линейная, поверхностная, объемная плотности заряда.

4) Укажите связь объемной и поверхностной плотности зарядов.

5) Может ли поле вне разноименно и однородно заряженных параллельных бесконечных плоскостей быть отличным от нуля

6) Электрический диполь помещен внутрь замкнутой поверхности. Каков поток сквозь эту поверхность

Видео:Билет №02 "Теорема Гаусса"Скачать

Билет №02 "Теорема Гаусса"

Теорема Гаусса

Для полноценного описания электростатического поля заданной системы зарядов в вакууме достаточно экспериментально подтвержденного закона Кулона и принципа суперпозиции. Но при этом существует возможность свойства электростатического поля охарактеризовать в ином обобщенном виде, не опираясь на утверждения касательно кулоновского поля точечного заряда.

Видео:Лекция 237. Вектор электрической индукцииСкачать

Лекция 237.  Вектор электрической индукции

Поток вектора напряженности

Зададим новую физическую величину, описывающую электрическое поле – поток Φ вектора напряженности электрического поля. Предположим, что в пространстве, содержащем заданное электрическое поле, имеется некая достаточно малая площадка Δ S .

Элементарный поток вектора напряженности (через площадку S ) – это физическая величина, равная произведению модуля вектора E → , площади Δ S и косинуса угла α между вектором и нормалью к площадке:

Δ Φ = E Δ S cos α = E n Δ S.

В данной формуле E n является модулем нормальной составляющей поля E → .

Поток вектора электрической индукции через замкнутую поверхность

Рисунок 1 . 3 . 1 . Иллюстрация элементарного потока Δ Φ .

Теперь возьмем для рассмотрения некую произвольную замкнутую поверхность S . Разобьем заданную поверхность на площадки небольшого размера Δ S i , рассчитаем элементарные потоки Δ Φ i поля через эти малые площадки, после чего найдем их сумму, что в итоге даст нам поток Φ вектора через замкнутую поверхность S (рис. 1 . 3 . 2 ):

Φ = ∑ ∆ Φ i = ∑ E m ∆ S i

Когда речь идет о поверхности замкнутого типа, всегда используется внешняя нормаль.

Поток вектора электрической индукции через замкнутую поверхность

Рисунок 1 . 3 . 2 . Расчет потока Ф через произвольную замкнутую поверхность S .

Видео:Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.

Теорема Гаусса. Доказательство

Теорема или закон Гаусса для электростатического поля в вакууме является одним из основных электродинамических законов.

Поток вектора напряженности электростатического поля E → через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε 0 .

Уравнение Гаусса имеет вид:

Φ = 1 ε 0 ∑ q в н у т р

Докажем указанную теорию: для этого исследуем сферическую поверхность (или поверхность шара) S . В центре заданной поверхности расположен точечный заряд q . Любая точка сферы обладает электрическим полем, перпендикулярным поверхности сферы и равным по модулю:

E = E n = 1 4 π ε 0 · q R 2 ,

где R является радиусом сферы.

Поток Φ через поверхность шара запишется, как произведение E и площади сферы 4 π R 2 . Тогда: Φ = 1 ε 0 q .

Следующим нашим шагом будет окружение точечного заряда произвольной поверхностью S замкнутого типа; зададим также вспомогательную сферу R 0 (рис. 1 . 3 . 3 ).

Поток вектора электрической индукции через замкнутую поверхность

Рисунок 1 . 3 . 3 . Поток электрического поля точечного заряда через произвольную поверхность S , окружающую заряд.

Возьмем для рассмотрения конус с малым телесным углом Δ Ω при вершине. Рассматриваемый конус задаст на сфере малую площадку Δ S 0 , а на поверхности S – площадку Δ S . Элементарные потоки Δ Φ 0 и Δ Φ через эти площадки являются одинаковыми. В самом деле:

Δ Φ 0 = E 0 Δ S 0 , Δ Φ = E Δ S cos α = E Δ S ‘ ,

где выражением Δ S ‘ = Δ S cos α определяется площадка, которая задастся конусом с телесным углом Δ Ω на поверхности сферы радиуса n .

Поскольку ∆ S 0 ∆ S ‘ = R 0 2 r 2 , то ∆ Φ 0 = ∆ Φ . Из полученного следует вывод о том, что полный поток электрического поля точечного заряда через произвольную поверхность, охватывающую заряд, равен потоку Φ 0 через поверхность вспомогательной сферы:

Так же мы можем продемонстрировать, что, когда замкнутая поверхность S не охватывает точечный заряд q , поток Φ равен нулю. Этот случай проиллюстрирован на рис. 1 . 3 . 2 . Все силовые линии электрического поля точечного заряда пронизывают замкнутую поверхность S насквозь. Внутри поверхности S зарядов нет, т.е. в этой области не наблюдается обрыва или зарождения силовых линий.

Обобщение теоремы Гаусса на случай произвольного распределения зарядов является следствием из принципа суперпозиции. Поле любого распределения зарядов возможно записать в виде векторной суммы электрических полей точечных зарядов. Поток Φ системы зарядов через произвольную замкнутую поверхность S сложится из потоков Φ i электрических полей отдельных зарядов. Когда заряд q i расположен внутри поверхности S , он дает вклад в поток, равный q i ε 0 . В случае расположения заряда снаружи поверхности его вклад в поток есть нуль.

Так, мы доказали теорему Гаусса.

Теорема Гаусса, по сути, есть следствие закона Кулона и принципа суперпозиции. Однако, взяв за изначальную аксиому утверждения теоремы, следствием станет закон Кулона, в связи с чем теорему Гаусса порой называют альтернативной формулировкой закона Кулона.

Опираясь на теорему Гаусса, в определенных случаях легко определить напряженность электрического поля вокруг заряженного тела (при наличии заранее угаданных симметрии заданного распределения зарядов и общей структуры поля).

Видео:Лекция №4 "Диэлектрики, вектор электрической индукции"Скачать

Лекция №4 "Диэлектрики, вектор электрической индукции"

Применение теоремы Гаусса

В качестве примера можно рассмотреть задачу, в которой необходимо вычислить поле тонкостенного полого однородно заряженного длинного цилиндра с радиусом R . Такая задача имеет осевую симметрию, и из соображений симметрии электрическое поле должно иметь направление по радиусу. Таким образом, чтобы иметь возможность применить теорему Гаусса, оптимально выбрать поверхность замкнутого типа S в виде соосного цилиндра некоторого радиуса r и длины l , закрытого с обоих торцов (рис. 1 . 3 . 4 ).

Поток вектора электрической индукции через замкнутую поверхность

Рисунок 1 . 3 . 4 . Иллюстрация поля однородно заряженного цилиндра. O O ‘ – ось симметрии.

Если r ≥ R , то весь поток вектора напряженности пройдет через боковую поверхность цилиндра, поскольку поток через оба основания есть нуль. Формула площади боковой поверхности цилиндра запишется как: 2 π r l . Применим закон Гаусса и получим:

Φ = E 2 π r l = τ l ε 0 .

В указанном выражении τ является зарядом длины цилиндра. Далее можно записать:

Данное выражение не имеет зависимости от радиуса R заряженного цилиндра, а значит оно применимо и к полю длинной однородно заряженной нити.

Чтобы найти напряженность поля внутри заряженного цилиндра, необходимо создать замкнутую поверхность для случая r R . В соответствии с симметрией задачи поток вектора напряженности через боковую поверхность цилиндра должен быть, и в этом случае он равен Φ = E 2 π r l . Исходя из гауссовской теоремы, этот поток находится в пропорции к заряду, расположенному внутри замкнутой поверхности. Заряд этот равен нулю, откуда вытекает, что электрическое поле внутри однородно заряженного длинного полого цилиндра тоже есть нуль.

Точно так же теорема и формула Гаусса применимы для определения электрического поля в иных случаях, когда распределение зарядов охарактеризовано какой-либо симметрией, к примеру, симметрией относительно центра, плоскости или оси. Во всех этих случаях необходимо выбирать замкнутую гауссову поверхность подходящей формы.

К примеру, в случае центральной симметрии поверхность оптимально выбрать в виде сферы, у которой центр расположен в точке симметрии. Когда мы имеем симметрию относительно оси, подходящим видом замкнутой поверхности будет соосный цилиндр, закрытый с обоих торцов (аналогично рассмотренному выше примеру).

При отсутствии симметрии и невозможности угадать общую структуру поля, теорема Гаусса не сможет быть применена для упрощения решения задачи по определению напряженности поля.

Разберем еще пример распределения зарядов при наличии симметрии: нахождение поля равномерно заряженной плоскости (рис. 1 . 3 . 5 ).

Поток вектора электрической индукции через замкнутую поверхность

Рисунок 1 . 3 . 5 . Поле равномерно заряженной плоскости. σ – поверхностная плотность заряда. S – замкнутая гауссова поверхность.

Здесь гауссову поверхность S оптимально задать как цилиндр некой длины, замкнутый с обоих концов. Ось цилиндра является перпендикуляром к заряженной плоскости; в свою очередь, торцы цилиндра находятся на одинаковом расстоянии от нее. В соответствии с симметрией поле равномерно заряженной плоскости должно везде иметь направление по нормали. Применим теорему Гаусса и получим:

2 E ∆ S = σ ∆ S ε 0 или E = σ 2 ε 0 .

Здесь σ является поверхностной плотностью заряда или зарядом, приходящимся на единицу площади.

Выражение, которое мы получили для электрического поля однородно заряженной плоскости, возможно использовать и для плоских заряженных площадок конечного размера: здесь расстояние от точки, в которой мы определяем напряженность поля, до заряженной площадки должно быть значимо меньше размеров площадки.

Видео:Урок 222. Поток вектора напряженности электрического поляСкачать

Урок 222. Поток вектора напряженности электрического поля

Теорема Остроградского—Гаусса

Разделы: Физика

Класс: 10

Ключевые слова: теория

Цель урока: Теорема Остроградского–Гаусса была установлена русским математиком и механиком Михаилом Васильевичем Остроградским в виде некоторой общей математической теоремы и немецким математиком Карлом Фридрихом Гауссом. Данная теорема может быть использована при изучении физики на профильном уровне, так как позволяет более рационально производить расчёты электрических полей.

Вектор электрической индукции

Для вывода теоремы Остроградского–Гаусса необходимо ввести такие важные вспомогательные понятия, как вектор электрической индукции Поток вектора электрической индукции через замкнутую поверхностьи поток этого вектора Ф.

Известно, что электростатическое поле часто изображают при помощи силовых линий. Предположим, что мы определяем напряжённость в точке, лежащей на границе раздела двух сред: воздуха(Поток вектора электрической индукции через замкнутую поверхность=1) и воды (Поток вектора электрической индукции через замкнутую поверхность=81). В этой точке при переходе из воздуха в воду напряжённость электрического поля согласно формуле Поток вектора электрической индукции через замкнутую поверхностьуменьшится в 81 раз. Если пренебречь проводимостью воды, то во столько же раз уменьшится число силовых линий. При решении различных задач на расчёт полей из-за прерывности вектора напряжённости Поток вектора электрической индукции через замкнутую поверхностьна границе раздела сред и на диэлектриках создаются определённые неудобства. Чтобы избежать их, вводится новый вектор Поток вектора электрической индукции через замкнутую поверхность, который называется вектором электрической индукции: Поток вектора электрической индукции через замкнутую поверхность

Вектор электрической индукции равен произведению вектора Поток вектора электрической индукции через замкнутую поверхностьна электрическую постоянную Поток вектора электрической индукции через замкнутую поверхностьи на диэлектрическую проницаемость среды в данной точкеПоток вектора электрической индукции через замкнутую поверхность.

Очевидно, что при переходе через границу двух диэлектриков число линий электрической индукции не изменяется для поля точечного заряда Поток вектора электрической индукции через замкнутую поверхность(1).

В системе СИ вектор электрической индукции измеряется в кулонах на квадратный метр (Кл/м 2 ). Выражение (1) показывает, что численное значение вектора Поток вектора электрической индукции через замкнутую поверхностьне зависит от свойств среды. Поле вектора Поток вектора электрической индукции через замкнутую поверхностьграфически изображается аналогично полю напряжённости Поток вектора электрической индукции через замкнутую поверхность(например, для точечного заряда см. рис.1). Для поля вектора Поток вектора электрической индукции через замкнутую поверхностьимеет место принцип суперпозиции: Поток вектора электрической индукции через замкнутую поверхность

Поток вектора электрической индукции через замкнутую поверхность

Поток электрической индукции

Вектор электрической индукции Поток вектора электрической индукции через замкнутую поверхностьхарактеризует электрическое поле в каждой точке пространства. Можно ввести ещё одну величину, зависящую от значений вектора Поток вектора электрической индукции через замкнутую поверхностьне в одной точке, а во всех точках поверхности, ограниченной плоским замкнутым контуром.

Для этого рассмотрим плоский замкнутый проводник (контур) с площадью поверхности S, помещённый в однородное электрическое поле. Нормаль Поток вектора электрической индукции через замкнутую поверхностьк плоскости проводника составляет угол Поток вектора электрической индукции через замкнутую поверхностьс направлением вектора электрической индукции (рис. 2).

Потоком электрической индукции через поверхность S называют величину, равную произведению модуля вектора индукции Поток вектора электрической индукции через замкнутую поверхностьна площадь S и на косинус угла Поток вектора электрической индукции через замкнутую поверхностьмежду вектором Поток вектора электрической индукции через замкнутую поверхностьи нормалью Поток вектора электрической индукции через замкнутую поверхность: Поток вектора электрической индукции через замкнутую поверхность

Поток вектора электрической индукции через замкнутую поверхность

Вывод теоремы Остроградского–Гаусса

Эта теорема позволяет найти поток вектора электрической индукции через замкнутую поверхность, внутри которой находятся электрические заряды.

Пусть вначале один точечный заряд q помещён в центр сферы произвольного радиуса r1 (рис. 3). Тогда Поток вектора электрической индукции через замкнутую поверхность; Поток вектора электрической индукции через замкнутую поверхность. Вычислим полный поток индукции проходящий через всю поверхность этой сферы: Поток вектора электрической индукции через замкнутую поверхность; Поток вектора электрической индукции через замкнутую поверхность(Поток вектора электрической индукции через замкнутую поверхность). Если возьмём сферу Поток вектора электрической индукции через замкнутую поверхностьрадиуса Поток вектора электрической индукции через замкнутую поверхность, то также Ф = q. Если проведём сферу Поток вектора электрической индукции через замкнутую поверхность, не охватывающую заряд q, то полный поток Ф = 0 (так как каждая линия войдёт в поверхность, а другой раз выйдет из неё).

Таким образом, Ф = q, если заряд расположен внутри замкнутой поверхности и Ф = 0, если заряд расположен вне замкнутой поверхности. Поток Ф от формы поверхности не зависит. Он также не зависит от расположения зарядов внутри поверхности. Это значит, что полученный результат справедлив не только для одного заряда, но и для какого угодно числа произвольно расположенных зарядов, если только подразумевать под q алгебраическую сумму всех зарядов, находящихся внутри поверхности.

Теорема Гаусса: поток электрической индукции через любую замкнутую поверхность равен алгебраической сумме всех зарядов, находящихся внутри поверхности: Поток вектора электрической индукции через замкнутую поверхность.

Из формулы видно, что размерность электрического потока такая же, как и электрического заряда. Поэтому единицей потока электрической индукции служит кулон (Кл).

Примечание: если поле неоднородно и поверхность, через которую определяют поток, не является плоскостью, то эту поверхность можно разбить на бесконечно малые элементы ds и каждый элемент считать плоским, а поле возле него однородным. Поэтому для любого электрического поля поток вектора электрической индукции через элемент поверхности есть: =Поток вектора электрической индукции через замкнутую поверхность. В результате интегрирования полный поток через замкнутую поверхность S в любом неоднородном электрическом поле равен: Поток вектора электрической индукции через замкнутую поверхность, где q – алгебраическая сумма всех зарядов, окружённых замкнутой поверхностью S. Выразим последнее уравнение через напряжённость электрического поля (для вакуума): Поток вектора электрической индукции через замкнутую поверхность.

Это одно из фундаментальных уравнений Максвелла для электромагнитного поля, записанное в интегральной форме. Оно показывает, что источником постоянного во времени электрического поля являются неподвижные электрические заряды.

Применение теоремы Гаусса

Поле непрерывно распределённых зарядов

Определим теперь с помощью теоремы Остроградского-Гаусса напряжённость поля для ряда случаев.

1. Электрическое поле равномерно заряженной сферической поверхности.

Сфера радиусом R. Пусть заряд +q равномерно распределён по сферической поверхности радиуса R. Распределение заряда по поверхности характеризуется поверхностной плотностью заряда Поток вектора электрической индукции через замкнутую поверхность(рис.4). Поверхностной плотностью заряда называют отношение заряда к площади поверхности, по которой он распределён. Поток вектора электрической индукции через замкнутую поверхность. В СИ Поток вектора электрической индукции через замкнутую поверхность.

Поток вектора электрической индукции через замкнутую поверхность

Определим напряжённость поля:

а) вне сферической поверхности,
б) внутри сферической поверхности.

а) Возьмём точку А, отстоящую от центра заряженной сферической поверхности на расстоянии r>R. Проведём через неё мысленно сферическую поверхность S радиуса r, имеющую общий центр с заряженной сферической поверхностью. Из соображения симметрии очевидно, что силовые линии являются радиальными прямыми перпендикулярными к поверхности S и равномерно пронизывают эту поверхность, т.е. напряжённость по всех точках этой поверхности постоянна по величине. Применим теорему Остроградского-Гаусса к этой сферической поверхности S радиуса r. Поэтому полный поток через сферу равен N = E? S; N=EПоток вектора электрической индукции через замкнутую поверхность. С другой стороны Поток вектора электрической индукции через замкнутую поверхность. Приравниваем: Поток вектора электрической индукции через замкнутую поверхность. Отсюда: Поток вектора электрической индукции через замкнутую поверхностьпри r>R.

Таким образом: напряжённость, создаваемая равномерно заряженной сферической поверхностью, вне её такая же, как если бы весь заряд находился в её центре (рис.5).

Поток вектора электрической индукции через замкнутую поверхность

б) Найдём напряжённость поля в точках, лежащих внутри заряженной сферической поверхности. Возьмём точку В отстоящую от центра сферы на расстоянии Поток вектора электрической индукции через замкнутую поверхность0 от плоскости (рис. 8).

б) если Поток вектора электрической индукции через замкнутую поверхность19.04.2009

🎦 Видео

45. Электрическое смещениеСкачать

45. Электрическое смещение

Поток через замкнутую поверхность. Формула Остроградского-ГауссаСкачать

Поток через замкнутую поверхность. Формула Остроградского-Гаусса

Электростатическая индукцияСкачать

Электростатическая индукция

Электромагнитная индукция. Магнитный поток. Правило Ленца | Физика 11 класс #4 | ИнфоурокСкачать

Электромагнитная индукция. Магнитный поток. Правило Ленца | Физика 11 класс #4 | Инфоурок

Урок 281. Электромагнитная индукция. Магнитный поток. Правило ЛенцаСкачать

Урок 281. Электромагнитная индукция. Магнитный поток. Правило Ленца

Закон электромагнитной индукцииСкачать

Закон электромагнитной индукции

Поток вектора магнитной индукцииСкачать

Поток вектора магнитной индукции

44. Электрическое поле в диэлектрике. Вектор поляризованностиСкачать

44. Электрическое поле в диэлектрике. Вектор поляризованности

ЧК_МИФ 3_1_5_2_(L3) ВЕКТОР ЭЛЕКТРИЧЕСКОЙ ИНДУКЦИИСкачать

ЧК_МИФ 3_1_5_2_(L3) ВЕКТОР ЭЛЕКТРИЧЕСКОЙ ИНДУКЦИИ

46. Граничные условия для электрического поляСкачать

46. Граничные условия для электрического поля

Физика 11 класс (Урок№5 - Электромагнитная индукция.)Скачать

Физика 11 класс (Урок№5 - Электромагнитная индукция.)

Урок 225. Задачи на поток вектора напряженности электрического поляСкачать

Урок 225. Задачи на поток вектора напряженности электрического поля

Физика. 10 класс. Поток вектора напряженности электрического поля. Теорема Гаусса /18.01.2021/Скачать

Физика. 10 класс. Поток вектора напряженности электрического поля. Теорема Гаусса /18.01.2021/

Билет №16 "Теорема о циркуляции и теорема Гаусса для магнитного поля"Скачать

Билет №16 "Теорема о циркуляции и теорема Гаусса для магнитного поля"

Электромагнитная индукция. ЕГЭ Физика. Николай НьютонСкачать

Электромагнитная индукция. ЕГЭ Физика. Николай Ньютон
Поделиться или сохранить к себе: