Построить вектор в системе oxyz

11 класс. Геометрия. Метод координат в пространстве. Прямоугольная система координат.

11 класс. Геометрия. Метод координат в пространстве. Прямоугольная система координат.

  • Оглавление
  • Занятия
  • Обсуждение
  • О курсе

Вопросы

Поделись с друзьями

Комментарии преподавателя

Видео:Как построить точки в системе координат OXYZСкачать

Как построить точки в системе координат OXYZ

1. Введение

Если через точку О в про­стран­стве мы про­ве­дем три пер­пен­ди­ку­ляр­ные пря­мые, на­зо­вем их, вы­бе­рем на­прав­ле­ние, обо­зна­чим еди­нич­ные от­рез­ки, то мы по­лу­чим пря­мо­уголь­ную си­сте­му ко­ор­ди­нат в про­стран­стве. Оси ко­ор­ди­нат на­зы­ва­ют­ся так: Ох – ось абс­цисс, Оy – ось ор­ди­нат и Оz – ось ап­пли­кат. Вся си­сте­ма ко­ор­ди­нат обо­зна­ча­ет­ся – Oxyz. Таким об­ра­зом, по­яв­ля­ют­ся три ко­ор­ди­нат­ные плос­ко­сти: Оxy, Оxz, Оyz.

При­ве­дем при­мер по­стро­е­ния точки В(4;3;5) в пря­мо­уголь­ной си­сте­ме ко­ор­ди­нат (см. Рис. 1).

Построить вектор в системе oxyz

Рис. 1. По­стро­е­ние точки B в про­стран­стве

Пер­вая ко­ор­ди­на­та точки B – 4, по­это­му от­кла­ды­ва­ем на Ox 4, про­во­дим пря­мую па­рал­лель­но оси Oy до пе­ре­се­че­ния с пря­мой, про­хо­дя­щей через у=3. Таким об­ра­зом, мы по­лу­ча­ем точку K. Эта точка лежит в плос­ко­сти Oxy и имеет ко­ор­ди­на­ты K(4;3;0). Те­перь нужно про­ве­сти пря­мую па­рал­лель­но оси Oz. И пря­мую, ко­то­рая про­хо­дит через точку с ап­пли­ка­той 5 и па­рал­лель­на диа­го­на­ли па­рал­ле­ло­грам­ма в плос­ко­сти Oxy. На их пе­ре­се­че­нии мы по­лу­чим ис­ко­мую точку B.

Рас­смот­рим рас­по­ло­же­ние точек, у ко­то­рых одна или две ко­ор­ди­на­ты равны 0 (см. Рис. 2).

Построить вектор в системе oxyz

На­при­мер, точка A(3;-1;0). Нужно про­дол­жить ось Oy влево до зна­че­ния -1, найти точку 3 на оси Ox, и на пе­ре­се­че­нии линий, про­хо­дя­щих через эти зна­че­ния, по­лу­ча­ем точку А. Эта точка имеет ап­пли­ка­ту 0, а зна­чит, она лежит в плос­ко­сти Oxy.

Точка C(0;2;0) имеет абс­цис­су и ап­пли­ка­ту 0 – не от­ме­ча­ем. Ор­ди­на­та равна 2, зна­чит точка C лежит толь­ко на оси Oy, ко­то­рая яв­ля­ет­ся пе­ре­се­че­ни­ем плос­ко­стей Oxy и Oyz.

Чтобы от­ло­жить точку D(-4;0;3) про­дол­жа­ем ось Ox назад за на­ча­ло ко­ор­ди­нат до точки -4. Те­перь вос­ста­нав­ли­ва­ем из этой точки пер­пен­ди­ку­ляр – пря­мую, па­рал­лель­ную оси Oz до пе­ре­се­че­ния с пря­мой, па­рал­лель­ной оси Ox и про­хо­дя­щей через зна­че­ние 3 на оси Oz. По­лу­ча­ем току D(-4;0;3). Так как ор­ди­на­та точки равна 0, зна­чит точка D лежит в плос­ко­сти Oxz.

Сле­ду­ю­щая точка E(0;5;-3). Ор­ди­на­та точки 5, ап­пли­ка­та -3, про­во­дим пря­мые про­хо­дя­щие через эти зна­че­ния на со­от­вет­ству­ю­щих осях, и на их пе­ре­се­че­нии по­лу­ча­ем точку E(0;5;-3). Эта точка имеет первую ко­ор­ди­на­ту 0, зна­чит она лежит в плос­ко­сти Oyz.

Видео:Координаты точки и координаты вектора 1.Скачать

Координаты точки и координаты вектора 1.

2. Координаты вектора

На­чер­тим пря­мо­уголь­ную си­сте­му ко­ор­ди­нат в про­стран­стве Oxyz. За­да­дим в про­стран­стве пря­мо­уголь­ную си­сте­му ко­ор­ди­нат Oxyz. На каж­дой из по­ло­жи­тель­ных по­лу­осей от­ло­жим от на­ча­ла ко­ор­ди­нат еди­нич­ный век­тор, т. е. век­тор, длина ко­то­ро­го равна еди­ни­це. Обо­зна­чим еди­нич­ный век­тор оси абс­циссПостроить вектор в системе oxyz, еди­нич­ный век­тор оси ор­ди­нат Построить вектор в системе oxyz, и еди­нич­ный век­тор оси ап­пли­кат Построить вектор в системе oxyz(см. рис. 1). Эти век­то­ры со­на­прав­ле­ны с на­прав­ле­ни­я­ми осей, имеют еди­нич­ную длину и ор­то­го­наль­ны – по­пар­но пер­пен­ди­ку­ляр­ны. Такие век­то­ра на­зы­ва­ют ко­ор­ди­нат­ны­ми век­то­ра­ми или ба­зи­сом.

Построить вектор в системе oxyz

Рис. 1. Раз­ло­же­ние век­то­ра по трем ко­ор­ди­нат­ным век­то­рам

Возь­мем век­тор Построить вектор в системе oxyz, по­ме­стим его в на­ча­ло ко­ор­ди­нат, и раз­ло­жим этот век­тор по трем неком­пла­нар­ным — ле­жа­щим в раз­ных плос­ко­стях — век­то­рам. Для этого опу­стим про­ек­цию точки M на плос­кость Oxy, и най­дем ко­ор­ди­на­ты век­то­ров Построить вектор в системе oxyz, Построить вектор в системе oxyzи Построить вектор в системе oxyz. По­лу­ча­ем: Построить вектор в системе oxyz. Рас­смот­рим по от­дель­но­сти каж­дый из этих век­то­ров. Век­тор Построить вектор в системе oxyzлежит на оси Ox, зна­чит, со­глас­но свой­ству умно­же­ния век­то­ра на число, его можно пред­ста­вить как ка­кое-то число x умно­жен­ное на ко­ор­ди­нат­ный век­тор Построить вектор в системе oxyz. Построить вектор в системе oxyz, а длина век­то­ра Построить вектор в системе oxyzровно в x раз боль­ше длины Построить вектор в системе oxyz. Так же по­сту­пим и с век­то­ра­ми Построить вектор в системе oxyzи Построить вектор в системе oxyz, и по­лу­ча­ем раз­ло­же­ние век­то­ра Построить вектор в системе oxyzпо трем ко­ор­ди­нат­ным век­то­рам:

Построить вектор в системе oxyz

Ко­эф­фи­ци­ен­ты этого раз­ло­же­ния x, y и z на­зы­ва­ют­ся ко­ор­ди­на­та­ми век­то­ра в про­стран­стве.

Рас­смот­рим пра­ви­ла, ко­то­рые поз­во­ля­ют по ко­ор­ди­на­там дан­ных век­то­ров найти ко­ор­ди­на­ты их суммы и раз­но­сти, а также ко­ор­ди­на­ты про­из­ве­де­ния дан­но­го век­то­ра на дан­ное число.

Построить вектор в системе oxyz; Построить вектор в системе oxyz

1) Сло­же­ние: Построить вектор в системе oxyz

2) Вы­чи­та­ние: Построить вектор в системе oxyz

3) Умно­же­ние на число: Построить вектор в системе oxyz, Построить вектор в системе oxyz

Век­тор, на­ча­ло ко­то­ро­го сов­па­да­ет с на­ча­лом ко­ор­ди­нат, на­зы­ва­ет­ся ра­ди­усвек­то­ром. (Рис. 2). Век­тор Построить вектор в системе oxyz— ра­ди­ус-век­тор, где x, y и z – это ко­эф­фи­ци­ен­ты раз­ло­же­ния этого век­то­ра по ко­ор­ди­нат­ным век­то­рам Построить вектор в системе oxyz, Построить вектор в системе oxyz, Построить вектор в системе oxyz. В дан­ном слу­чае x – это пер­вая ко­ор­ди­на­та точки A на оси Ox, y – ко­ор­ди­на­та точки B на оси Oy, z – ко­ор­ди­на­та точки C на оси Oz. По ри­сун­ку видно, что ко­ор­ди­на­ты ра­ди­ус-век­то­ра од­но­вре­мен­но яв­ля­ют­ся ко­ор­ди­на­та­ми точки М.

Построить вектор в системе oxyz

Возь­мем точку A(x1;y1;z1) и точку B(x2;y2;z2) (см. рис. 3). Пред­ста­вим век­тор Построить вектор в системе oxyzкак раз­ность век­то­ров Построить вектор в системе oxyzи Построить вектор в системе oxyzпо свой­ству век­то­ров. При­чем, Построить вектор в системе oxyzи Построить вектор в системе oxyz— ра­ди­ус-век­то­ры, и их ко­ор­ди­на­ты сов­па­да­ют с ко­ор­ди­на­та­ми кон­цов этих век­то­ров. Тогда мы можем пред­ста­вить ко­ор­ди­на­ты век­то­ра Построить вектор в системе oxyzкак раз­ность со­от­вет­ству­ю­щих ко­ор­ди­нат век­то­ров Построить вектор в системе oxyzи Построить вектор в системе oxyz: Построить вектор в системе oxyz. Таким об­ра­зом, ко­ор­ди­на­ты век­то­ра мы можем вы­ра­зить через ко­ор­ди­на­ты конца и на­ча­ла век­то­ра.

Построить вектор в системе oxyz

Рас­смот­рим при­ме­ры, ил­лю­стри­ру­ю­щие свой­ства век­то­ров и их вы­ра­же­ние через ко­ор­ди­на­ты. Возь­мем век­то­ры Построить вектор в системе oxyz, Построить вектор в системе oxyz, Построить вектор в системе oxyz. Нас спра­ши­ва­ют век­тор Построить вектор в системе oxyz. В дан­ном слу­чае найти Построить вектор в системе oxyzэто зна­чит найти ко­ор­ди­на­ты век­то­ра , ко­то­рые пол­но­стью его опре­де­ля­ют. Под­став­ля­ем в вы­ра­же­ние вме­сто век­то­ров со­от­вет­ствен­но их ко­ор­ди­на­ты. По­лу­ча­ем:

Построить вектор в системе oxyz

Те­перь умно­жа­ем число 3 на каж­дую ко­ор­ди­на­ту в скоб­ках, и то же самое де­ла­ем с 2:Построить вектор в системе oxyz

У нас по­лу­чи­лась сумма трех век­то­ров, скла­ды­ва­ем их по изу­чен­но­му выше свой­ству:

Построить вектор в системе oxyz

Ответ: Построить вектор в системе oxyz

Дано: Тре­уголь­ная пи­ра­ми­да AOBC (см. рис. 4). Плос­ко­сти AOB, AOC и OCB – по­пар­но пер­пен­ди­ку­ляр­ны. OA=3, OB=7, OC=4; M — сер.AC; N — сер.OC; P – сер. CB.

Найти: Построить вектор в системе oxyz,Построить вектор в системе oxyz,Построить вектор в системе oxyz,Построить вектор в системе oxyz,Построить вектор в системе oxyz,Построить вектор в системе oxyz,Построить вектор в системе oxyz,Построить вектор в системе oxyz.

Построить вектор в системе oxyz

Ре­ше­ние: Вве­дем пря­мо­уголь­ную си­сте­му ко­ор­ди­нат Oxyz с на­ча­лом от­сче­та в точке O. По усло­вию обо­зна­ча­ем точки A, B и C на осях и се­ре­ди­ны ребер пи­ра­ми­ды – M, P и N. По ри­сун­ку на­хо­дим ко­ор­ди­на­ты вер­шин пи­ра­ми­ды: A(3;0;0), B(0;7;0), C(0;0;4).

Так как ко­ор­ди­на­ты век­то­ра Построить вектор в системе oxyz— это раз­ность ко­ор­ди­нат его конца и на­ча­ла, по­лу­ча­ем:Построить вектор в системе oxyz. Таким же об­ра­зом на­хо­дим ко­ор­ди­на­ты век­то­ров Построить вектор в системе oxyzи Построить вектор в системе oxyz. Построить вектор в системе oxyz; Построить вектор в системе oxyz.

Чтобы найти ко­ор­ди­на­ты век­то­ра Построить вектор в системе oxyz, нужно сна­ча­ла найти ко­ор­ди­на­ты точек M и N. По ри­сун­ку видно, что точка N имеет ко­ор­ди­на­тыПостроить вектор в системе oxyz, так как она лежит на оси ап­пли­кат. Рас­смот­рим Построить вектор в системе oxyz. MN – сред­няя линия, Построить вектор в системе oxyz. Зна­чит ко­ор­ди­на­та точки M по оси Oz 2. Те­перь про­ве­дем из точки M пер­пен­ди­ку­ляр к оси Ox, ко­ор­ди­на­та 1,5. Точка M лежит в плос­ко­сти Oxz, зна­чит по оси Oy ко­ор­ди­на­та 0. По­лу­ча­ем M(1,5;0;2). Те­перь зная ко­ор­ди­на­ты точек M и N, счи­та­ем их раз­ность: Построить вектор в системе oxyz.

Те­перь най­дем ко­ор­ди­на­ты точки P. Опу­стим пер­пен­ди­ку­ляр на плос­кость Oxy, по­лу­ча­ем зна­че­ние 3,5 по оси ор­ди­нат. И про­ве­дя пер­пен­ди­ку­ляр к оси Oz, по­лу­ча­ем зна­че­ние 2 по оси ап­пли­кат. Точка P имеет ко­ор­ди­на­ты (0;3,5;2). Зная ко­ор­ди­на­ты нуж­ных точек, най­дем ко­ор­ди­на­ты остав­ших­ся век­то­ров.

Построить вектор в системе oxyz;

Построить вектор в системе oxyz.

Век­то­ра Построить вектор в системе oxyzи Построить вектор в системе oxyz— ра­ди­ус-век­то­ры, зна­чит, их ко­ор­ди­на­ты равны ко­ор­ди­на­там кон­цов этих век­то­ров: Построить вектор в системе oxyz, Построить вектор в системе oxyz.

Видео:Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

Координаты вектора в декартовой системе координат (ДСК)

Для начала дадим определение координат вектора в заданной системе координат. Чтобы ввести данное понятие, определим что мы называем прямоугольной или декартовой системой координат.

Прямоугольная система координат представляет из себя прямолинейную систему координат с взаимно перпендикулярными осями на плоскости или в пространстве.

С помощью введения прямоугольной системы координат на плоскости или в трехмерном пространстве становится возможным описывание геометрических фигур вместе с их свойствами при помощи уравнений и неравенств, то есть использовать алгебраические методы при решении геометрических задач.

Тем самым, мы можем привязать к заданной системе координат векторы. Это значительно расширит наши возможности при решении определенных задач

Прямоугольная система координат на плоскости обычно обозначается O x y , где O x и O y – оси коорднат. Ось O x называют осью абсцисс, а ось O y – осью ординат (в пространстве появляется ещё одна ось O z , которая перпендикулярна и O x и O y ).

Итак, нам дана прямоугольная декартова система координат O x y на плоскости если мы отложим от начала координат векторы i → и j → , направление которых соответственно совпадет с положительными направлениями осей O x и O y , и их длина будет равна условной единице, мы получим координатные векторы. То есть в данном случае i → и j → являются координатными векторами.

Видео:11 класс, 1 урок, Прямоугольная система координат в пространствеСкачать

11 класс, 1 урок, Прямоугольная система координат в пространстве

Координатные векторы

Векторы i → и j → называются координатными векторами для заданной системы координат.

Откладываем от начала координат произвольный вектор a → . Опираясь на геометрическое определение операций над векторами, вектор a → может быть представлен в виде a → = a x · i → + a y · j → , где коэффициенты a x и a y — единственные в своем роде, их единственность достаточно просто доказать методом от противного.

Видео:построение точки в пространствеСкачать

построение точки в пространстве

Разложение вектора

Разложением вектора a → по координатным векторам i → и j → на плоскости называется представление вида a → = a x · i → + a y · j → .

Коэффициенты a x и a y называются координатами вектора в данной системе координат на плоскости.

Координаты вектора в данной системе координат принято записывать в круглых скобках, через запятую, при этом заданные координаты следует отделять от обозначения вектора знаком равенства. К примеру, запись a → = ( 2 ; — 3 ) означает, что вектор a → имеет координаты ( 2 ; — 3 ) в данной системе координат и может быть представлен в виде разложения по координатным векторам i → и j → как a → = 2 · i → — 3 · j → .

Следует обратить внимание, что порядок записи координат, имеет важное значение, если вы запишите координаты вектора в другом порядке, вы получите совершенно другой вектор.

Опираясь на определения координат вектора и их разложения становится очевидным, что единичные векторы i → и j → имеют координаты ( 1 ; 0 ) и ( 0 ; 1 ) соответственно, и они могут быть представлены в виде следующих разложений i → = 1 · i → + 0 · j → ; j → = 0 · i → + 1 · j → .

Также имеет место быть нулевой вектор 0 → с координатами ( 0 ; 0 ) и разложением 0 → = 0 · i → + 0 · j → .

Видео:Прямоугольная система координат в пространстве. 11 класс.Скачать

Прямоугольная система координат в пространстве. 11 класс.

Равные и противоположные векторы

Векторы a → и b → равны тогда, когда их соответствующие координаты равны.

Противоположным вектором называется вектор противоположный данному.

Отсюда следует, что координаты такого вектора будут противоположны координатам данного вектора, то есть, — a → = ( — a x ; — a y ) .

Все вышеизложенное можно аналогично определить и для прямоугольной системы координат, заданной в трехмерном пространстве. В такой системе координат имеет место быть тройка координатных векторов i → , j → , k → , а произвольный вектор a → раскладывается не по двум, а уже по трем координатам, причем единственным образом и имеет вид a → = a x · i → + a y · j → + a z · k → , а коэффициенты этого разложения ( a x ; a y ; a z ) называются координатами вектора в данной (трехмерной) системе координат.

Следовательно, координатные векторы в трехмерном пространстве принимают также значение 1 и имеют координаты i → = ( 1 ; 0 ; 0 ) , j → = ( 0 ; 1 ; 0 ) , k → = ( 0 ; 0 ; 1 ) , координаты нулевого вектора также равны нулю 0 → = ( 0 ; 0 ; 0 ) , и в таком случае два вектора будут считаться равными, если все три соответствующие координаты векторов между собой равны a → = b → ⇔ a x = b x , a y = b y , a z = b z , и координаты противоположного вектора a → противоположны соответствующим координатам вектора a → , то есть, — a → = ( — a x ; — a y ; — a z ) .

Видео:Прямоугольная система координат в пространстве. Практическая часть. 11 класс.Скачать

Прямоугольная система координат в пространстве. Практическая часть.  11 класс.

Координаты радиус-вектора точки

Чтобы ввести данное определение, требуется показать в данной системе координат связь координат точки и координат вектора.

Пусть нам дана некоторая прямоугольная декартова система координат O x y и на ней задана произвольная точка M с координатами M ( x M ; y M ) .

Вектор O M → называется радиус-вектором точки M .

Определим, какие координаты в данной системе координат имеет радиус-вектор точки

Вектор O M → имеет вид суммы O M → = O M x → + O M y → = x M · i → + y M · j → , где точки M x и M y это проекции точки М на координатные прямые Ox и Oy соответственно (данные рассуждения следуют из определения проекция точки на прямую), а i → и j → — координатные векторы, следовательно, вектор O M → имеет координаты ( x M ; y M ) в данной системе координат.

Иначе говоря, координаты радиус-вектора точки М равны соответствующим координатам точки М в прямоугольной декартовой системе координат.

Построить вектор в системе oxyz

Аналогично в трехмерном пространстве радиус-вектор точки M ( x M ; y M ; z M ) разлагается по координатным векторам как O M → = O M x → + O M y → + O M z → = x M · i → + y M · j → + z M · k → , следовательно, O M → = ( x M ; y M ; z M ) .

Видео:Координаты вектора в пространстве. 11 класс.Скачать

Координаты вектора  в пространстве. 11 класс.

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Видео:№917. Начертите прямоугольную систему координат Оху и координатные векторы i и j. ПостройтеСкачать

№917. Начертите прямоугольную систему координат Оху и координатные векторы i и j. Постройте

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Построить вектор в системе oxyz

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Построить вектор в системе oxyz

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.

Построить вектор в системе oxyz
Построить вектор в системе oxyz

Длина вектора Построить вектор в системе oxyzв пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Построить вектор в системе oxyz

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Построить вектор в системе oxyz

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Построить вектор в системе oxyz

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы Построить вектор в системе oxyzи Построить вектор в системе oxyz.

Построить вектор в системе oxyz

Построить вектор в системе oxyz

Произведение вектора на число:

Построить вектор в системе oxyz

Скалярное произведение векторов:

Построить вектор в системе oxyz

Косинус угла между векторами:

Построить вектор в системе oxyz

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Построить вектор в системе oxyz

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами Построить вектор в системе oxyzи Построить вектор в системе oxyz. Для этого нужны их координаты.

Построить вектор в системе oxyz

Запишем координаты векторов:

Построить вектор в системе oxyz

Построить вектор в системе oxyz

и найдем косинус угла между векторами Построить вектор в системе oxyzи Построить вектор в системе oxyz:

Построить вектор в системе oxyz

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Построить вектор в системе oxyz

Координаты точек A, B и C найти легко:

Построить вектор в системе oxyz

Построить вектор в системе oxyz

Построить вектор в системе oxyz

Из прямоугольного треугольника AOS найдем Построить вектор в системе oxyz

Координаты вершины пирамиды: Построить вектор в системе oxyz

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Построить вектор в системе oxyz

Построить вектор в системе oxyz

Найдем координаты векторов Построить вектор в системе oxyzи Построить вектор в системе oxyz

Построить вектор в системе oxyz

Построить вектор в системе oxyz

и угол между ними:

Построить вектор в системе oxyz

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Построить вектор в системе oxyz

Запишем координаты точек:

Построить вектор в системе oxyz

Построить вектор в системе oxyz

Построить вектор в системе oxyz

Построить вектор в системе oxyz

Построить вектор в системе oxyz

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Построить вектор в системе oxyz

Найдем координаты векторов Построить вектор в системе oxyzи Построить вектор в системе oxyz, а затем угол между ними:

Построить вектор в системе oxyz

Построить вектор в системе oxyz

Построить вектор в системе oxyz

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Видео:Вектор в системе координат OXYZСкачать

Вектор в системе координат OXYZ

Плоскость в пространстве задается уравнением:

Построить вектор в системе oxyz

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Построить вектор в системе oxyz

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Построить вектор в системе oxyz

Подставим в него по очереди координаты точек M, N и K.

Построить вектор в системе oxyz

То есть A + C + D = 0.

Построить вектор в системе oxyzПостроить вектор в системе oxyz

Аналогично для точки K:

Построить вектор в системе oxyz

Получили систему из трех уравнений:

Построить вектор в системе oxyz

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Построить вектор в системе oxyz

Построить вектор в системе oxyz

Выразим C и B через A и подставим в третье уравнение:

Построить вектор в системе oxyz

Решив систему, получим:

Построить вектор в системе oxyz

Уравнение плоскости MNK имеет вид:

Построить вектор в системе oxyz

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Построить вектор в системе oxyz

Вектор Построить вектор в системе oxyz— это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку Построить вектор в системе oxyzимеет вид:

Построить вектор в системе oxyz

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Построить вектор в системе oxyz

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Построить вектор в системе oxyz

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Построить вектор в системе oxyz

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор Построить вектор в системе oxyzперпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть: Построить вектор в системе oxyz

Напишем уравнение плоскости AEF.

Построить вектор в системе oxyz

Берем уравнение плоскости Построить вектор в системе oxyzи по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Построить вектор в системе oxyzПостроить вектор в системе oxyz

Построить вектор в системе oxyz

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF: Построить вектор в системе oxyz

Нормаль к плоскости AEF: Построить вектор в системе oxyz

Найдем угол между плоскостями:

Построить вектор в системе oxyz

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».

Построить вектор в системе oxyz

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор Построить вектор в системе oxyzили, еще проще, вектор Построить вектор в системе oxyz.

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Построить вектор в системе oxyz

Построить вектор в системе oxyz

Координаты вектора Построить вектор в системе oxyz— тоже:

Построить вектор в системе oxyz

Находим угол между плоскостями, равный углу между нормалями к ним:

Построить вектор в системе oxyz

Зная косинус угла, находим его тангенс по формуле

Построить вектор в системе oxyz

Получим:
Построить вектор в системе oxyz

Ответ: Построить вектор в системе oxyz

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть Построить вектор в системе oxyz— вектор, лежащий на прямой m (или параллельный ей), Построить вектор в системе oxyz— нормаль к плоскости α.

Построить вектор в системе oxyz

Находим синус угла между прямой m и плоскостью α по формуле:

Построить вектор в системе oxyz

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Построить вектор в системе oxyz

Построить вектор в системе oxyz

Построить вектор в системе oxyz

Находим координаты вектора Построить вектор в системе oxyz.

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор Построить вектор в системе oxyz.

Найдем угол между прямой и плоскостью:

Построить вектор в системе oxyz

Ответ: Построить вектор в системе oxyz

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

Построить вектор в системе oxyz

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = Построить вектор в системе oxyz, AD = Построить вектор в системе oxyz. Высота параллелепипеда AA1 = Построить вектор в системе oxyz. Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Построить вектор в системе oxyz

Построить вектор в системе oxyz

Построить вектор в системе oxyz

Построить вектор в системе oxyz

Построить вектор в системе oxyz

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

Построить вектор в системе oxyzПостроить вектор в системе oxyz

Решим эту систему. Выберем Построить вектор в системе oxyz

Тогда Построить вектор в системе oxyz

Уравнение плоскости A1DB имеет вид:

Построить вектор в системе oxyz

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

Построить вектор в системе oxyz

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

📸 Видео

9 класс, 2 урок, Координаты вектораСкачать

9 класс, 2 урок, Координаты вектора

§3 Координаты вектораСкачать

§3 Координаты вектора

Векторы. Метод координат. Вебинар | МатематикаСкачать

Векторы. Метод координат. Вебинар | Математика

Координаты вектора.Скачать

Координаты вектора.

№757. Начертите векторы х, у и z так, чтобы x↑↑y, x↑↓z . Постройте векторыСкачать

№757. Начертите векторы х, у и z так, чтобы x↑↑y, x↑↓z . Постройте векторы

Построение проекции вектора на осьСкачать

Построение проекции вектора на ось

Как построить проекцию вектора?Скачать

Как построить проекцию вектора?

Полярная система координатСкачать

Полярная система координат

Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

Разложение вектора по базису. 9 класс.Скачать

Разложение вектора по базису. 9 класс.
Поделиться или сохранить к себе: