Построить треугольник по основанию углу и радиусу вписанной окружности

Постройте треугольник по двум углам и радиусу вписанной окружности.
Содержание
  1. Ваш ответ
  2. решение вопроса
  3. Похожие вопросы
  4. Треугольник вписанный в окружность
  5. Определение
  6. Формулы
  7. Радиус вписанной окружности в треугольник
  8. Радиус описанной окружности около треугольника
  9. Площадь треугольника
  10. Периметр треугольника
  11. Сторона треугольника
  12. Средняя линия треугольника
  13. Высота треугольника
  14. Свойства
  15. Доказательство
  16. Построить произвольный треугольник и вписать в него окружность
  17. Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов
  18. Окружность, вписанная в треугольник. Теоремы и их рассмотрение
  19. Окружность, вписанная в равнобедренный треугольник
  20. Окружность, вписанная в прямоугольный треугольник
  21. Формулировка теоремы о вписанной окружности
  22. Теорема о центре окружности, вписанной в треугольник
  23. Окружность, вписанная в треугольник
  24. Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся
  25. Описание презентации по отдельным слайдам:
  26. Краткое описание документа:
  27. Дистанционное обучение как современный формат преподавания
  28. Математика: теория и методика преподавания в образовательной организации
  29. Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
  30. Дистанционные курсы для педагогов
  31. Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
  32. Другие материалы
  33. Вам будут интересны эти курсы:
  34. Оставьте свой комментарий
  35. Автор материала
  36. Дистанционные курсы для педагогов
  37. Подарочные сертификаты
  38. 💥 Видео

Видео:Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать

Задача 6 №27934 ЕГЭ по математике. Урок 148

Ваш ответ

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

решение вопроса

Видео:Задача № 27933 ЕГЭ по математике. Урок 147Скачать

Задача № 27933 ЕГЭ по математике. Урок 147

Похожие вопросы

  • Все категории
  • экономические 43,282
  • гуманитарные 33,619
  • юридические 17,900
  • школьный раздел 607,029
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Задача 6 №27900 ЕГЭ по математике. Урок 128Скачать

Задача 6 №27900 ЕГЭ по математике. Урок 128

Треугольник вписанный в окружность

Построить треугольник по основанию углу и радиусу вписанной окружности

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Построить треугольник по основанию углу и радиусу вписанной окружности

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = fracab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Видео:Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Видео:Задача 6 №27913 ЕГЭ по математике. Урок 131Скачать

Задача 6 №27913 ЕГЭ по математике. Урок 131

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

Построить треугольник по основанию углу и радиусу вписанной окружности

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Видео:Радиус вписанной окружности, формулу через площадь и полупериметрСкачать

Радиус вписанной окружности, формулу через площадь и полупериметр

Построить произвольный треугольник и вписать в него окружность

Видео:Нафиг теорему синусов 3 задание проф. ЕГЭ по математике (часть II)Скачать

Нафиг теорему синусов 3 задание проф. ЕГЭ по математике (часть II)

Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Построить треугольник по основанию углу и радиусу вписанной окружности

Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.

Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.

Вот еще две формулы для площади.
Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

— радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части :

где — стороны треугольника, — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

Построить треугольник по основанию углу и радиусу вписанной окружности

Ты нашел то, что искал? Поделись с друзьями!

. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

Построить треугольник по основанию углу и радиусу вписанной окружности

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

Построить треугольник по основанию углу и радиусу вписанной окружности

По теореме синусов,

Получаем, что . Угол — тупой. Значит, он равен .

. Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.

Построить треугольник по основанию углу и радиусу вписанной окружности

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем . Тогда .

Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Окружность, вписанная в треугольник. Теоремы и их рассмотрение

Еще в Древнем Египте появилась наука, с помощью которой можно было измерять объемы, площади и другие величины. Толчком к этому послужило строительство пирамид. Оно предполагало значительное число сложных расчетов. И кроме строительства, было важно правильно измерить землю. Отсюда и появилась наука «геометрия» от греческих слов «геос» — земля и «метрио» — измеряю.

Исследованию геометрических форм способствовало наблюдение астрономических явлений. И уже в 17-м веке до н. э. были найдены начальные способы расчета площади круга, объема шара и главнейшее открытие — теорема Пифагора.

Построить треугольник по основанию углу и радиусу вписанной окружностиВам будет интересно: Казахская академия спорта и туризма. Факультеты, структура вуза

Формулировка теоремы об окружности, вписанной в треугольник выглядит следующим способом:

В треугольник можно вписать только одну окружность.

При таком расположении окружность — вписанная, а треугольник — описанный около окружности.

Формулировка теоремы о центре окружности, вписанной в треугольник, выглядит следующим образом:

Центральная точка окружности, вписанной в треугольник, есть точка пересечения биссектрис этого треугольника.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Окружность, вписанная в равнобедренный треугольник

Окружность считается вписанной в треугольник, если она хотя бы одной точкой касается всех его сторон.

На фото ниже показана окружность, находящаяся внутри равнобедренного треугольника. Условие теоремы об окружности, вписанной в треугольник, соблюдено — она касается всех сторон треугольника AB, ВС И СА в точках R, S, Q соответственно.

Одним из свойств равнобедренного треугольника является то, что вписанная окружность точкой касания делит основание пополам (BS = SC), а радиус вписанной окружности составляет треть высоты данного треугольника(SP=AS/3).

Построить треугольник по основанию углу и радиусу вписанной окружности

Свойства теоремы об окружности, вписанной в треугольник:

  • Отрезки, выходящие из одной вершины треугольника к точкам касания с окружностью, равны. На рисунке AR = AQ, BR = BS, CS = CQ.
  • Радиус окружности (вписанной) — это площадь, деленная на полупериметр треугольника. Как пример, нужно начертить равнобедренный треугольник с теми же буквенными обозначениями, что на картинке, следующих размеров: основание ВС = 3 см, высота AS = 2 см, стороны АВ=ВС, соответственно, получаются по 2,5 см каждая. Проведем из каждого угла биссектрису и место их пересечения обозначим как Р. Впишем окружность с радиусом PS, длину которого нужно найти. Узнать площадь треугольника можно, умножив 1/2 основания на высоту: S = 1/2 * DC * AS = 1/2 * 3 * 2 = 3 см2. Полупериметр треугольника равен 1/2 суммы всех сторон: Р = (АВ + ВС + СА) / 2 = (2,5 + 3 + 2,5) / 2 = 4 см; PS = S/P = 3/4 = 0,75 см2, что полностью соответствует действительности, если измерить линейкой. Соответственно, верно свойство теоремы об окружности, вписанной в треугольник.

Видео:РАДИУС вписанной окружности #математика #огэ #огэматематика #данирСкачать

РАДИУС вписанной окружности #математика #огэ #огэматематика #данир

Окружность, вписанная в прямоугольный треугольник

Для треугольника с прямым углом действуют свойства теоремы об вписанной окружности в треугольник. И, кроме того, добавляется возможность решать задачи с постулатами теоремы Пифагора.

Построить треугольник по основанию углу и радиусу вписанной окружности

Радиус вписанной окружности в прямоугольный треугольник можно определить следующим образом: сложить длины катетов, вычесть значение гипотенузы и получившееся значение разделить на 2.

Есть хорошая формула, которая поможет высчитать площадь треугольника — периметр умножить на радиус вписанной в этот треугольник окружности.

Видео:Задача 6 №27932 ЕГЭ по математике. Урок 146Скачать

Задача 6 №27932 ЕГЭ по математике. Урок 146

Формулировка теоремы о вписанной окружности

В планиметрии важны теоремы о вписанных и описанных фигурах. Одна из них звучит так:

Центр окружности, вписанной в треугольник, является точкой пересечения биссектрис, проведенных из его углов.

Построить треугольник по основанию углу и радиусу вписанной окружности

На представленном рисунке показано доказательство данной теоремы. Показано равенство углов, и, соответственно, равенство прилегающих треугольников.

Видео:Строим треугольник по стороне, медиане и радиусу описанной окружности (Задача 8).Скачать

Строим треугольник по стороне, медиане и радиусу описанной окружности (Задача 8).

Теорема о центре окружности, вписанной в треугольник

Радиусы окружности, вписанной в треугольник, проведенные в точки касания перпендикулярны сторонам треугольника.

Задание «сформулируйте теорему об окружности вписанной в треугольник» не должно застать врасплох, потому что это одни из фундаментальных и простейших знаний в геометрии, которыми необходимо владеть в полной мере для решения многих практических задач в реальной жизни.

Видео:Нафиг теорему синусов 3 задание проф. ЕГЭ по математике (часть I)Скачать

Нафиг теорему синусов 3 задание проф. ЕГЭ по математике (часть I)

Окружность, вписанная в треугольник

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Видео:ОГЭ, геометрия, задачи повышенной сложности. Часть 3Скачать

ОГЭ, геометрия, задачи повышенной сложности. Часть 3

Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся

Сертификат и скидка на обучение каждому участнику

Построить треугольник по основанию углу и радиусу вписанной окружности

Построить треугольник по основанию углу и радиусу вписанной окружности

Описание презентации по отдельным слайдам:

Построить треугольник по основанию углу и радиусу вписанной окружности

Окружность, вписанная в треугольник

Построить треугольник по основанию углу и радиусу вписанной окружности

Окружность называется вписанной в треугольник, если все стороны треугольника касаются окружности. A B C O

Построить треугольник по основанию углу и радиусу вписанной окружности

A B C D F E M N O K r r r Как вписать в окружность треугольник В треугольник можно вписать окружность, и притом только одну. Её центр – точка пересечения биссектрис треугольника. Проведём биссектрисы треугольника: АK, ВM, СN. Построим перпендикуляры ОD, OE, OF, которые равны между собой, т.к. равны соответствующие треугольники. Получаем ОD= OE= OF=r.

Построить треугольник по основанию углу и радиусу вписанной окружности

Алгоритм построения вписанной окружности в треугольник 1.Строим две биссектрисы треугольника. Точка пересечения — центр вписанной окружности. 2. Строим перпендикуляр на основание из точки пересечения. 3. Этот перпендикуляр является радиусом вписанной окружности. 4. Строим вписанную окружность.

Построить треугольник по основанию углу и радиусу вписанной окружности

Задача №1 Построить вписанную окружность в: 1. остроугольный треугольник; 2. тупоугольный треугольник; 3. прямоугольный треугольник. Самостоятельная работа Построить вписанную окружность в: 1. остроугольный равнобедренный треугольник; 2. тупоугольный равнобедренный треугольник; 3. прямоугольный равнобедренный треугольник.

Построить треугольник по основанию углу и радиусу вписанной окружности

Положение центра вписанной окружности

Краткое описание документа:

Презентация по геометрии для урока в 8 классе создана для наглядного изучения вопроса о том, как вписать окружность в треугольник. В ней просто и доходчиво доказывается, что центром окружности, вписанной в треугольник, является точка пересечения биссектрис треугольника. Важная часть презентации — это то, что в ней показан алгоритм построения окружности, вписанной в треугольник. В презентации есть три задачи для закрепления нового материала. Также даны задачи для самостоятельной работы, решение которых поможет ребятам ещё лучше разобраться в новой теме. Последний слайд обращает внимание ребят на положение центра окружности, вписанной в треугольник.

Построить треугольник по основанию углу и радиусу вписанной окружности

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 945 человек из 79 регионов

Построить треугольник по основанию углу и радиусу вписанной окружности

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 678 человек из 75 регионов

Построить треугольник по основанию углу и радиусу вписанной окружности

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 305 человек из 68 регионов

Ищем педагогов в команду «Инфоурок»

Видео:Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.Скачать

Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.

Дистанционные курсы для педагогов

Развитие управляющих функций мозга ребёнка: полезные советы и упражнения для педагогов

Сертификат и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 512 033 материала в базе

Другие материалы

  • 13.05.2015
  • 3544
  • 8
  • 13.05.2015
  • 764
  • 0
  • 13.05.2015
  • 601
  • 0
  • 13.05.2015
  • 3374
  • 140
  • 13.05.2015
  • 1211
  • 1
  • 13.05.2015
  • 621
  • 5
  • 13.05.2015
  • 702
  • 1

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 13.05.2015 6349
  • PPTX 227.7 кбайт
  • 6 скачиваний
  • Рейтинг: 5 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Сазонова Татьяна Фёдоровна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

Построить треугольник по основанию углу и радиусу вписанной окружности

  • На сайте: 7 лет
  • Подписчики: 0
  • Всего просмотров: 30423
  • Всего материалов: 17

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Видео:Радиус вписанной окружности #математика #егэ #математикапрофиль2023 #fyp #школаСкачать

Радиус вписанной окружности #математика #егэ #математикапрофиль2023 #fyp #школа

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Построить треугольник по основанию углу и радиусу вписанной окружности

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Построить треугольник по основанию углу и радиусу вписанной окружности

В школьном курсе мировой истории планируют уделить больше внимания Азии и Африке

Время чтения: 1 минута

Построить треугольник по основанию углу и радиусу вписанной окружности

В Петербурге введут новые COVID-ограничения для несовершеннолетних

Время чтения: 2 минуты

Построить треугольник по основанию углу и радиусу вписанной окружности

В Роспотребнадзоре заявили о широком распространении COVID-19 среди детей

Время чтения: 1 минута

Построить треугольник по основанию углу и радиусу вписанной окружности

Минобрнауки запускает конкурс студенческих научных обществ

Время чтения: 1 минута

Построить треугольник по основанию углу и радиусу вписанной окружности

В Петербурге открыли памятник работавшим во время блокады учителям

Время чтения: 1 минута

Построить треугольник по основанию углу и радиусу вписанной окружности

В России утвердили новые правила аккредитации образовательных учреждений

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

💥 Видео

Построить окружность, вписанную в треугольникСкачать

Построить окружность, вписанную в треугольник
Поделиться или сохранить к себе: