- Калькулятор комплексных чисел. Вычисление выражений с комплексными числами
- Как пользоваться калькулятором
- Ввод комплексных чисел
- Поддерживаемые операции и математические функции
- Примеры корректных выражений
- Комплексные числа
- Примеры комплексных чисел
- Основные действия с комплексными числами
- Примеры
- Другие действия над комплексными числами
- Примеры
- Формы представления комплексных чисел
- Пример:
- Аргумент и модуль комплексного числа
- 💡 Видео
Конспект урока
Алгебра и начала математического анализа, 11 класс
Урок №39. Геометрическая интерпретация комплексного числа.
Перечень вопросов, рассматриваемых в теме
- изображение комплексного числа на плоскости- точками;
- изображение комплексного числа на плоскости- векторами;
3) определение модуля комплексного числа.
Глоссарий по теме:
а) Комплексные числа изображают точками плоскости по следующему правилу: a + bi = M (a; b)
б) Комплексное число можно изобразить вектором, который имеет начало в точке О и конец в данной точке
Длина радиус-вектора, изображающего комплексное число z=a+bi, называется модулем этого комплексного числа.
Модуль любого ненулевого комплексного числа есть положительное число. Модули комплексно сопряженных чисел равны. Модуль произведения/частного двух комплексных чисел равен произведению/частному модулей каждого из чисел.
Модуль вычисляется по формуле:
То есть модуль есть сумма квадратов действительной и мнимой частей заданного числа.
Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.
Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Геометрическое изображение комплексных чисел.
а) Комплексные числа изображаются точками плоскости по следующему правилу: a + bi = M (a; b) (рис.1).
б) Комплексное число можно изобразить вектором, который имеет начало в точке О и конец в данной точке (рис.2).
Пример. Постройте точки, изображающие комплексные числа: 1; — i; — 1 + i; 2 – 3i (рис.3).
Модуль комплексного числа
Как отмечалось выше, комплексное число также можно изображать радиус-вектором (рис. 4).
Длина радиус-вектора, изображающего комплексное число z=a+bi, называется модулем этого комплексного числа.
Модуль любого ненулевого комплексного числа есть положительное число. Модули комплексно сопряженных чисел равны. Модуль произведения/частного двух комплексных чисел равен произведению/частному модулей каждого из чисел.
Модуль вычисляется по формуле:
То есть модуль есть сумма квадратов действительной и мнимой частей заданного числа.
Иногда еще модуль комплексного числа обозначается как r или ρ.
Разбор решения заданий тренировочного модуля
№1. Тип задания: единичный выбор
Найдите модуль комплексного числа z=5-3i
- 4
- 5
Решим данное задание, используя определение модуля.
Т.к. Re z=5, Im z= -3, то искомое значение
Верный ответ: 2.
№2. Тип задания: рисование.
Изобразите вектором на комплексной плоскости точку z=2+3i
Разобьем z=2+3i на две части: z1=2 и z2= 3i. Отметим на плоскости точки О и А, соединим их:
Видео:Радиус векторСкачать
Калькулятор комплексных чисел. Вычисление выражений с комплексными числами
Калькулятор комплексных чисел позволяет вычислять арифметические выражения, содержащие комплексные числа, знаки арифметических действий (+, -, *, /, ^), а также некоторые математические функции.
Калькулятор комплексных чисел
Видео:Изображение комплексных чисел. Модуль комплексного числа. 11 класс.Скачать
Как пользоваться калькулятором
- Введите в поле ввода выражение с комплексными числами
- Укажите, требуется ли вывод решения переключателем «С решением»
- Нажмите на кнопку «Построить»
Видео:2.4. Радиус-вектор и вектор перемещенияСкачать
Ввод комплексных чисел
комплексные числа можно вводить в следующих трёх форматах:
- Только действительная часть: 2, 2.5, -6.7, 12.25
- Только мнимая часть: i, -i, 2i, -5i, 2.16i, -12.5i
- Действительная и мнимая части: 2+i, -5+15i, -7+2.5i, -6+i
- Математические константы: π, e
Видео:Как построить точки в системе координат OXYZСкачать
Поддерживаемые операции и математические функции
- Арифметические операции: +, -, *, /, ^
- Получение абсолютного значения числа: abs
- Базовые математические функции: exp, ln, sqrt
- Получение действительной и мнимой частей: re, im
- Тригонометрические функции: sin, cos, tg, ctg
- Гиперболические функции: sh, ch, th, cth
- Обратные тригонометрические функции: arcsin, arccos, arctg, arcctg
- Обратные гиперболические функции: arsh, arch, arth, arcth
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Примеры корректных выражений
- (2+3i)*(5-7i)
- sh(i)
- (4+i) / (3 — 4i)
- sqrt(2i)
- (-3+4i)*2i / exp(2i + (15 — 8i)/4 — 3.75)
Видео:Координаты вектора. 9 класс.Скачать
Комплексные числа
Комплексные числа — это числа вида x+iy , где x , y — вещественные числа, а i — мнимая единица (специальное число, квадрат которого равен -1, то есть i 2 = -1 ).
Так же, как и для вещественных чисел, для комплексных чисел определены операции сложения, разности, умножения и деления, однако комплексные числа нельзя сравнивать.
Видео:Радиус-векторыСкачать
Примеры комплексных чисел
- 4+3i — действительная часть = 4, мнимая = 3
- -2+i — действительная часть = -2, мнимая = 1
- i — действительная часть = 0, мнимая = 1
- -i — действительная часть = 0, мнимая = -1
- 10 — действительная часть = 10, мнимая = 0
Видео:Лекция 4.1 | Радиус-вектор, скорость и ускорение | Александр Чирцов | ЛекториумСкачать
Основные действия с комплексными числами
Основными операциями, определёнными для комплексных чисел, являются сложение, разность, произведение и деление комплексных чисел. Операции для двух произвольных комплексных чисел (a + bi) и (c + di) определяются следующим образом:
- сложение: (a + bi) + (c + di) = (a + c) + (b + d)i
- вычитание: (a + bi) — (c + di) = (a — c) + (b — d)i
- умножение: (a + bi) · (c + di) = ac + bci + adi + bdi 2 = (ac — bd) + (bc + ad)i
- деление:
Примеры
Найти сумму чисел 5+7i и 5.5-2i :
Найдём отдельно суммы действительных частей и сумму мнимых частей: re = 5 + 5.5 = 10.5, im = 7 — 2 = 5.
Запишем их рядом, добавив к мнимой части i: 10.5 + 5i
Полученное число и будет ответом: 5+7i + 5.5-2i = 10.5 + 5i
Найти разность чисел 12-i и -2i :
Найдём отдельно разности действительных частей и разности мнимых частей: re = 12 — 0 = 12, im = -1 — (-2) = 1.
Запишем их рядом, добавив к мнимой части i: 12 + 1i
Полученное число и будет ответом: 12-i — (-2i) = 12 + i
Найти произведение чисел 2+3i и 5-7i :
Найдём по формуле действительную и мнимую части: re = 2·5 — 3·(-7) = 31, im = 3·5 + 2·(-7) = 1.
Запишем их рядом, добавив к мнимой части i: 31 + 1i
Полученное число и будет ответом: 2+3i * (5-7i) = 31 + i
Найти отношение чисел 75-50i и 3+4i :
Найдём по формуле действительную и мнимую части: re = (75·3 — 50·4) / 25 = 1, im = (-50·3 — 75·4) / 25 = -18.
Запишем их рядом, добавив к мнимой части i: 1 — 18i
Полученное число и будет ответом: 75-50i / (3+4i) = 1 — 18i
Видео:Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать
Другие действия над комплексными числами
Помимо базовых операций сложения, вычитания, умножения и деления комплексных чисел существуют также различные математические функции. Рассмотрим некоторые из них:
- Получение действительной части числа: Re(z) = a
- Получение мнимой части числа: Im(z) = b
- Модуль числа: |z| = √(a 2 + b 2 )
- Аргумент числа: arg z = arctg(b / a)
- Экспонента: e z = e a ·cos(b) + i·e a ·sin(b)
- Логарифм: Ln(z) = ln |z| + i·arg(z)
- Тригонометрические функции: sin z, cos z, tg z, ctg z
- Гиперболические функции: sh z, ch z, th z, cth z
- Обратные тригонометрические функции: arcsin z, arccos z, arctg z, arcctg z
- Обратные гиперболические функции: arsh z, arch z, arth z, arcth z
Примеры
Найти действительную и мнимую части числа z, а также его модуль, если z = 4 — 3i
Re(z) = Re(4 — 3i) = 4
Im(z) = Im(4 — 3i) = -3
|z| = √(4 2 + (-3) 2 ) = √25 = 5
Видео:ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать
Формы представления комплексных чисел
Комплексные числа принято представлять в одной из трёх следующих форм: алгебраической, тригонометрической и показательной.
- Алгебраическая форма — наиболее часто используемая форма комплексного числа, запись числа в виде суммы действительной и мнимой частей: x+iy , где x — действительная часть, а y — мнимая часть
- Тригонометричкая форма — запись вида r·(cos φ + isin φ) , где r — модуль комплексного числа (r = |z|), а φ — аргумент этого числа (φ = arg(z))
- Показательная форма — запись вида r·e iφ , где r — модуль комплексного числа (r = |z|), e — число Эйлера, а φ — аргумент комплексного числа (φ = arg(z))
Пример:
Переведите число 1+i в тригонометрическую и показательную формы:
- Найдём радиус (модуль) комплексного числа r: r = √(1 2 + 1 2 ) = √2
- Найдём аргумент числа: φ = arctan(
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Аргумент и модуль комплексного числа
Вычислить аргумент и модуль комплексного числа.
Аргументом комплексного числа z называется угол φ в радианах радиус-вектора точки, соответствующей данному комплексному числу и обозначается Arg(z) = φ
Аргументом комплексного числа z называется угол φ в радианах радиус-вектора точки, соответствующей данному комплексному числу и обозначается Arg(z) = φ
Из определения следуют следующие формулы:
Для числа z = 0 аргумент не определен.
Главным значением аргумента называется такое значение φ, что . Обозначается: arg(z).
— аргумент от произведения двух комплексных чисел равен сумме аргументов этих чисел | |
— аргумент частного двух комплексных чисел равен разности аргументов этих чисел | |
— аргумент от сопряженного комплексного числа равен отрицательному значению аргумента от этого числа. |
Модулем комплексного числа z = x + iy называется вещественное число |z| равное:
💡 Видео
Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать
Координаты точки и координаты вектора 1.Скачать
КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать
ЕГЭ по Физике 2022. Кинематика. Радиус-векторСкачать
КООРДИНАТЫ ВЕКТОРА В ПРОСТРАНСТВЕ решение задачСкачать
Математика без Ху!ни. Смешанное произведение векторовСкачать
Изобразить область на комплексной плоскостиСкачать
№776. Начертите два неколлинеарных вектора х и у и постройте векторы: a) x+2y; б) ½y + х; в) 3x+½yСкачать
Определение параметров движения по заданному радиус-вектору. Векторный способ задания движения.Скачать