Matlab вектор из векторов

Matlab вектор из векторов

Выше были рассмотрены операции с простыми переменными. Однако с их помощью сложно описывать сложные данные, такие как случайный сигнал, поступающий на вход фильтра или хранить кадр изображения и т.п. Поэтому в языках высокого уровня предусмотрена возможность хранить значения в виде массивов. В MatLab эту роль выполняют векторы и матрицы.

Ниже показан пример задания вектора с именем a, и содержащий значения 1, 2, 3, 4:

a = [1 2 3 4]; % вектор-строка

Для доступа к тому или иному элементу вектора используется следующая конструкция языка:

disp( a(1) ); % отображение значения 1-го элемента вектора
disp( a(2) ); % отображение значения 2-го элемента вектора
disp( a(3) ); % отображение значения 3-го элемента вектора
disp( a(4) ); % отображение значения 4-го элемента вектора

т.е. нужно указать имя вектора и в круглых скобках написать номер индекса элемента, с которым предполагается работать. Например, для изменения значения 2-го элемента массива на 10 достаточно записать

a(2) = 10; % изменение значения 2-го элемента на 10

Часто возникает необходимость определения общего числа элементов в векторе, т.е. определения его размера. Это можно сделать, воспользовавшись функцией length() следующим образом:

N = length(a); % (N=4) число элементов массива а

Если требуется задать вектор-столбец, то это можно сделать так

a = [1; 2; 3; 4]; % вектор-столбец

b = [1 2 3 4]’; % вектор-столбец

при этом доступ к элементам векторов осуществляется также как и для векторов-строк.

Следует отметить, что векторы можно составлять не только из отдельных чисел или переменных, но и из векторов. Например, следующий фрагмент программы показывает, как можно создавать один вектор на основе другого:

a = [1 2 3 4]; % начальный вектор a = [1 2 3 4]
b = [a 5 6]; % второй вектор b = [1 2 3 4 5 6]

Здесь вектор b состоит из шести элементов и создан на основе вектора а. Используя этот прием, можно осуществлять увеличение размера векторов в процессе работы программы:

a = [a 5]; % увеличение вектора а на один элемент

Недостатком описанного способа задания (инициализации) векторов является сложность определения векторов больших размеров, состоящих, например, из 100 или 1000 элементов. Чтобы решить данную задачу, в MatLab существуют функции инициализации векторов нулями, единицами или случайными значениями:

a1 = zeros(1, 100); % вектор-строка, 100 элементов с
% нулевыми значениями
a2 = zeros(100, 1); % вектор-столбец, 100 элементов с
% нулевыми значениями
a3 = ones(1, 1000); % вектор-строка, 1000 элементов с
% единичными значениями
a4 = ones(1000, 1); % вектор-столбец, 1000 элементов с
% единичными значениями
a5 = rand(1000, 1); % вектор-столбец, 1000 элементов со
% случайными значениями

Матрицы в MatLab задаются аналогично векторам с той лишь разницей, что указываются обе размерности. Приведем пример инициализации единичной матрицы размером 3х3:

E = [1 0 0; 0 1 0; 0 01]; % единичная матрица 3х3

E = [1 0 0
0 1 0
0 0 1]; % единичная матрица 3х3

Аналогичным образом можно задавать любые другие матрицы, а также использовать приведенные выше функции zeros(), ones() и rand(), например:

A1 = zeros(10,10); % нулевая матрица 10х10 элементов

A2 = zeros(10); % нулевая матрица 10х10 элементов
A3 = ones(5); % матрица 5х5, состоящая из единиц
A4 = rand(100); % матрица 100х100, из случайных чисел

Для доступа к элементам матрицы применяется такой же синтаксис как и для векторов, но с указанием строки и столбца где находится требуемый элемент:

A = [1 2 3;4 5 6;7 8 9]; % матрица 3х3
disp( A(2,1) ); % вывод на экран элемента, стоящего во
% второй строке первого столбца, т.е. 4
disp( A(1,2) ); % вывод на экран элемента, стоящего в
% первой строке второго столбца, т.е. 2

Также возможны операции выделения указанной части матрицы, например:

B1 = A(:,1); % B1 = [1; 4; 7] – выделение первого столбца
B2 = A(2,:); % B2 = [1 2 3] – выделение первой строки
B3 = A(1:2,2:3); % B3 = [2 3; 5 6] – выделение первых двух
% строк и 2-го и 3-го столбцов матрицы А.

Размерность любой матрицы или вектора в MatLab можно определить с помощью функции size(), которая возвращает число строк и столбцов переменной, указанной в качестве аргумента:

a = 5; % переменная а
A = [1 2 3]; % вектор-строка
B = [1 2 3; 4 5 6]; % матрица 2х3
size(a) % 1х1
size(A) % 1х3
size(B) % 2х3

© 2022 Научная библиотека

Копирование информации со страницы разрешается только с указанием ссылки на данный сайт

Видео:Основы линейной алгебры. 2. Векторы. Часть 1Скачать

Основы линейной алгебры. 2. Векторы. Часть 1

colon , :

Vector creation, array subscripting, and for -loop iteration

Видео:Работа с массивами. Вектор столбцы и вектор строки 1. Урок 7Скачать

Работа с массивами. Вектор столбцы и вектор строки 1. Урок 7

Syntax

Видео:Matlab создание вектора данныхСкачать

Matlab создание вектора данных

Description

The colon is one of the most useful operators in MATLAB ® . It can create vectors, subscript arrays, and specify for iterations.

x = j : k creates a unit-spaced vector x with elements [j,j+1,j+2. j+m] where m = fix(k-j) . If j and k are both integers, then this is simply [j,j+1. k] .

x = j : i : k creates a regularly-spaced vector x using i as the increment between elements. The vector elements are roughly equal to [j,j+i,j+2*i. j+m*i] where m = fix((k-j)/i) . However, if i is not an integer, then floating point arithmetic plays a role in determining whether colon includes the endpoint k in the vector, since k might not be exactly equal to j+m*i . If you specify nonscalar arrays, then MATLAB interprets j:i:k as j(1):i(1):k(1) .

x = colon(j,k) and x = colon(j,i,k) are alternate ways to execute the commands j:k and j:i:k , but are rarely used. These syntaxes enable operator overloading for classes.

A(:,n) , A(m,:) , A(:) , and A(j:k) are common indexing expressions for a matrix A that contain a colon. When you use a colon as a subscript in an indexing expression, such as A(:,n) , it acts as shorthand to include all subscripts in a particular array dimension. It is also common to create a vector with a colon for the purposes of indexing, such as A(j:k) . Some indexing expressions combine both uses of the colon, as in A(:,j:k) .

Common indexing expressions that contain a colon are:

A(:,n) is the n th column of matrix A .

A(m,:) is the m th row of matrix A .

A(. p) is the p th page of three-dimensional array A .

A(:) reshapes all elements of A into a single column vector. This has no effect if A is already a column vector.

A(. ) reshapes all elements of A into a two-dimensional matrix. This has no effect if A is already a matrix or vector.

A(j:k) uses the vector j:k to index into A and is therefore equivalent to the vector [A(j), A(j+1), . A(k)] .

A(:,j:k) includes all subscripts in the first dimension but uses the vector j:k to index in the second dimension. This returns a matrix with columns [A(:,j), A(:,j+1), . A(:,k)] .

Видео:Find sum of vector elements in MATLABСкачать

Find sum of vector elements in MATLAB

MATLAB — Векторы

Вектор — это одномерный массив чисел. MATLAB позволяет создавать два типа векторов —

  • Векторы строк
  • Векторы столбцов

Видео:Собственные векторы и собственные числа линейного оператораСкачать

Собственные векторы и собственные числа линейного оператора

Строки Векторы

Векторы строк создаются путем заключения набора элементов в квадратных скобках с использованием пробела или запятой для разделения элементов.

MATLAB выполнит приведенный выше оператор и вернет следующий результат —

Видео:MATLAB 04 Массивы и матрицыСкачать

MATLAB 04 Массивы и матрицы

Векторы столбцов

Векторы столбцов создаются заключением набора элементов в квадратные скобки с использованием точки с запятой для разделения элементов.

MATLAB выполнит приведенный выше оператор и вернет следующий результат —

Видео:MatLab. 6.6d. Собственные числа и векторы матриц, функции матрицСкачать

MatLab. 6.6d. Собственные числа и векторы матриц, функции матриц

Ссылка на элементы вектора

Вы можете ссылаться на один или несколько элементов вектора несколькими способами. I- й компонент вектора v обозначается как v (i). Например —

MATLAB выполнит приведенный выше оператор и вернет следующий результат —

Когда вы ссылаетесь на вектор с двоеточием, например, v (:), в нем отображаются все компоненты вектора.

📺 Видео

Собственные значения и собственные векторы матрицы (4)Скачать

Собственные значения и собственные векторы матрицы (4)

Основы МАТЛАБ.РАБОТА С МАССИВАМИ. ВЕКТОРЫ-СТОЛБЦЫ И ВЕКТОРЫ-СТРОКИСкачать

Основы МАТЛАБ.РАБОТА С МАССИВАМИ. ВЕКТОРЫ-СТОЛБЦЫ И ВЕКТОРЫ-СТРОКИ

Математика это не ИсламСкачать

Математика это не Ислам

MatLab. 3. 2b. Сложение, вычитание и умножение векторовСкачать

MatLab. 3. 2b. Сложение, вычитание и умножение векторов

Convert Matrix into Vector | MATLAB #shortsСкачать

Convert Matrix into Vector | MATLAB #shorts

Работа с массивами. Вектор столбцы и вектор строки 2. Урок 8Скачать

Работа с массивами. Вектор столбцы и вектор строки 2. Урок 8

Get a Vector from the user | MATLAB #shortsСкачать

Get a Vector from the user | MATLAB #shorts

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Работа с массивами. Обращение к элементам вектора. Урок 9Скачать

Работа с массивами. Обращение к элементам вектора. Урок 9

MatLab. 3.2. Двумерные массивы чисел: матрицы и векторыСкачать

MatLab. 3.2. Двумерные массивы чисел: матрицы и векторы

Операции над векторами matlabСкачать

Операции над векторами matlab

Занятие 12. Векторы и матрицыСкачать

Занятие 12. Векторы и матрицы
Поделиться или сохранить к себе: