Треугольник, вписанный в окружность. Теорема синусов
Серединный перпендикуляр к отрезку |
Окружность описанная около треугольника |
Свойства описанной около треугольника окружности. Теорема синусов |
Доказательства теорем о свойствах описанной около треугольника окружности |
- Серединный перпендикуляр к отрезку
- Окружность, описанная около треугольника
- Свойства описанной около треугольника окружности. Теорема синусов
- Доказательства теорем о свойствах описанной около треугольника окружности
- Треугольник вписанный в окружность
- Определение
- Формулы
- Радиус вписанной окружности в треугольник
- Радиус описанной окружности около треугольника
- Площадь треугольника
- Периметр треугольника
- Сторона треугольника
- Средняя линия треугольника
- Высота треугольника
- Свойства
- Доказательство
- Замечательные точки и линии треугольников. 9-й класс
- Презентация к уроку
- 📸 Видео
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Серединный перпендикуляр к отрезку
Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).
Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.
Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.
Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.
Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.
Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .
Докажем, что отрезок AE длиннее отрезка EB . Действительно,
Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.
Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,
Полученное противоречие и завершает доказательство теоремы 2
Видео:№701. Начертите три треугольника: остроугольный, прямоугольный и тупоугольный. В каждыйСкачать
Окружность, описанная около треугольника
Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .
Видео:Построить описанную окружность (Задача 1)Скачать
Свойства описанной около треугольника окружности. Теорема синусов
Фигура | Рисунок | Свойство | |
Серединные перпендикуляры к сторонам треугольника | Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке. Посмотреть доказательство | ||
Окружность, описанная около треугольника | Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника. Посмотреть доказательство | ||
Центр описанной около остроугольного треугольника окружности | Центр описанной около остроугольного треугольника окружности лежит внутри треугольника. | ||
Центр описанной около прямоугольного треугольника окружности | Центром описанной около прямоугольного треугольника окружности является середина гипотенузы. Посмотреть доказательство | ||
Центр описанной около тупоугольного треугольника окружности | Центр описанной около тупоугольного треугольника окружности лежит вне треугольника. | ||
Теорема синусов | |||
Площадь треугольника | |||
Радиус описанной окружности |
Серединные перпендикуляры к сторонам треугольника |
Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Для любого треугольника справедливы равенства (теорема синусов):
,
где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.
Для любого треугольника справедливо равенство:
где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.
Для любого треугольника справедливо равенство:
где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.
Видео:Построить окружность, вписанную в треугольникСкачать
Доказательства теорем о свойствах описанной около треугольника окружности
Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).
Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:
Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:
Следовательно, справедливо равенство:
откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.
Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).
При доказательстве теоремы 3 было получено равенство:
из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.
Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)
.
Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:
l = 2Rsin φ . | (1) |
Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).
Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.
Формула (1) доказана.
Из формулы (1) для вписанного треугольника ABC получаем (рис.7):
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Треугольник вписанный в окружность
Видео:№711. Начертите три треугольника: тупоугольный, прямоугольный и равносторонний. ДляСкачать
Определение
Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.
На рисунке 1 изображена окружность, описанная около
треугольника и окружность, вписанная в треугольник.
ВD = FC = AE — диаметры описанной около треугольника окружности.
O — центр вписанной в треугольник окружности.
Видео:Построить окружность, описанную около треугольникаСкачать
Формулы
Радиус вписанной окружности в треугольник
r — радиус вписанной окружности.
- Радиус вписанной окружности в треугольник,
если известна площадь и все стороны:
Радиус вписанной окружности в треугольник,
если известны площадь и периметр:
Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:
Радиус описанной окружности около треугольника
R — радиус описанной окружности.
- Радиус описанной окружности около треугольника,
если известна одна из сторон и синус противолежащего стороне угла:
Радиус описанной окружности около треугольника,
если известны все стороны и площадь:
Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:
Площадь треугольника
S — площадь треугольника.
- Площадь треугольника вписанного в окружность,
если известен полупериметр и радиус вписанной окружности:
Площадь треугольника вписанного в окружность,
если известен полупериметр:
Площадь треугольника вписанного в окружность,
если известен высота и основание:
Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:
Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:
[ S = fracab cdot sin angle C ]
Периметр треугольника
P — периметр треугольника.
- Периметр треугольника вписанного в окружность,
если известны все стороны:
Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:
Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:
Сторона треугольника
a — сторона треугольника.
- Сторона треугольника вписанного в окружность,
если известны две стороны и косинус угла между ними:
Сторона треугольника вписанного в
окружность, если известна сторона и два угла:
Средняя линия треугольника
l — средняя линия треугольника.
- Средняя линия треугольника вписанного
в окружность, если известно основание:
Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:
Высота треугольника
h — высота треугольника.
- Высота треугольника вписанного в окружность,
если известна площадь и основание:
Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:
[ h = b cdot sin alpha ]
Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:
Видео:Строим вписанную в данный треугольник окружность (Задача 2).Скачать
Свойства
- Центр вписанной в треугольник окружности
находится на пересечении биссектрис. - В треугольник, вписанный в окружность,
можно вписать окружность, причем только одну. - Для треугольника, вписанного в окружность,
справедлива Теорема Синусов, Теорема Косинусов
и Теорема Пифагора. - Центр описанной около треугольника окружности
находится на пересечении серединных перпендикуляров. - Все вершины треугольника, вписанного
в окружность, лежат на окружности. - Сумма всех углов треугольника — 180 градусов.
- Площадь треугольника вокруг которого описана окружность, и
треугольника, в который вписана окружность, можно найти по
формуле Герона.
Видео:Построение равностронего треугольника.Скачать
Доказательство
Около любого треугольника, можно
описать окружность притом только одну.
окружность и треугольник,
которые изображены на рисунке 2.
окружность описана
около треугольника.
- Проведем серединные
перпендикуляры — HO, FO, EO. - O — точка пересечения серединных
перпендикуляров равноудалена от
всех вершин треугольника. - Центр окружности — точка пересечения
серединных перпендикуляров — около
треугольника описана окружность — O,
от центра окружности к вершинам можно
провести равные отрезки — радиусы — OB, OA, OC.
окружность описана около треугольника,
что и требовалось доказать.
Подводя итог, можно сказать, что треугольник,
вписанный в окружность — это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.
Видео:7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольникиСкачать
Замечательные точки и линии треугольников. 9-й класс
Класс: 9
Презентация к уроку
Загрузить презентацию (529 кБ)
Цели:
- Познакомить с замечательными точками и линиями треугольника;
- познакомить с методами доказательства свойств замечательных точек и линий треугольника;
- повторить и обобщить материал по теме «Треугольник».
Задачи развивающие:
- Развитие умения устанавливать закономерности;
- развитие умения формулировать гипотезы, опровергать ошибочные и доказывать истинные;
- развитие умения составлять алгоритм действий и действовать по алгоритму;
- развитие математической интуиции;
- развитие графической культуры и математической речи.
Задачи воспитательные:
- Повышение познавательного интереса;
- расширение математического кругозора;
- развитие навыка конструктивного группового взаимодействия независимо от многообразия проявлений индивидуальности;
- воспитание чувства ответственности;
- развитие умения выступать перед аудиторией
Тип урока: изучение нового материала.
Метод: проблемно-исследовательский.
Форма: групповая.
Ход урока
1. Организационный момент, объявление темы занятия (слайд 1).
2. Повторение.
Треугольник – фигура удивительная. Она удивляет своей простотой, лаконичностью и в то же время своей универсальностью. Вспомните сколько раз, чтобы решить задачу или доказать теорему мы прибегали к разбиению многоугольника на треугольники.
Треугольник – первая геометрическая фигура, изученная нами в курсе геометрии. И сегодня мы поговорим о новых для вас свойствах треугольника, а треугольник в свою очередь поможет вам повторить очень много изученных в курсе планиметрии тем.
Вспоминаем изученные замечательные точки треугольника:
- Центр вписанной окружности (точка пересечения биссектрис треугольника);
- Центр описанной окружности (точка пересечения серединных перпендикуляров к сторонам треугольника);
- Точка пересечения высот треугольника (ортоцентр);
- Точка пересечения медиан треугольника.
Также вспоминаем алгоритм построения с помощью циркуля и линейки
каждой из этих точек.
Каждая группа получает индивидуальное задание (приложение 1, задание 1).
Задание № 1. (группа 1)
С помощью циркуля и линейки построить окружность, описанную около треугольника (треугольник остроугольный, тупоугольный и прямоугольный).
Задание № 1. (группа 2)
С помощью циркуля и линейки построить окружность, вписанную в треугольник (треугольник остроугольный, тупоугольный и прямоугольный)
Задание № 1. (группа 3)
С помощью циркуля и линейки построить точку пересечения высот треугольника (треугольник остроугольный, тупоугольный и прямоугольный)
Задание № 1. (группа 4)
С помощью циркуля и линейки построить точку пересечения медиан треугольника (треугольник остроугольный, тупоугольный и прямоугольный)
(Для экономии времени, группы получают заготовленные на альбомных листах изображения треугольников; все построения выполняются фломастерами, циркуль – «козья ножка» также с фломастером).
После выполнения каждая группа демонстрирует свои результаты и комментирует построения. При необходимости учитель вносит дополнения (слайды 3 – 6).
3. Свойство точек, симметричных ортоцентру относительно сторон треугольника.
Как вы думаете, все ли закономерности, связанные с треугольником мы изучили? (приложение 1, задание 2).
Задание № 2.
- Постройте произвольную окружность.
- Впишите в него произвольный остроугольный треугольник АВС.
- Постройте высоты AA1, BB1, CC1. Пусть H — точка пересечения высот.
- Постройте точку А2, симметричную точке Н относительно прямой, содержащей сторону ВС.
- Постройте точку В2, симметричную точке Н относительно прямой, содержащей сторону АС.
- Постройте точку С2, симметричную точке Н относительно прямой, содержащей сторону АВ.
Какое свойство вы заметили?
Сформулируйте свойство точек, симметричных ортоцентру относительно сторон треугольника.
Задание № 2.
- Постройте произвольную окружность.
- Впишите в него произвольный тупоугольный треугольник АВС.
- Постройте высоты AA1, BB1, CC1. Пусть H — точка пересечения высот.
- Постройте точку А2, симметричную точке Н относительно прямой, содержащей сторону ВС.
- Постройте точку В2, симметричную точке Н относительно прямой, содержащей сторону АС.
- Постройте точку С2, симметричную точке Н относительно прямой, содержащей сторону АВ.
Какое свойство вы заметили?
Сформулируйте свойство точек, симметричных ортоцентру относительно сторон треугольника.
Проверяем выполнение задания. Формулируем свойство точек, симметричных ортоцентру относительно сторон треугольника. (Слайды 7, 9)
4. Продолжаем «открывать» новые точки и линии, связанные с геометрией треугольника.
1. А верите ли вы, что, если на сторонах треугольника построить равносторонние треугольники и около них описать окружности, то эти окружности пересекутся в одной точке? (слайд 11).
2. А верите ли вы, что, основания перпендикуляров, опущенных из любой точки окружности на три стороны вписанного в нее треугольника, лежат на одной прямой? (слайд 14).
3. А верите ли вы, что, в треугольнике середины его сторон, середины отрезков, соединяющих его вершины с его ортоцентром, и основания его высот лежат на одной окружности? (слайд 17).
4. А верите ли вы, что, в треугольнике центр описанной окружности, ортоцентр и центр тяжести лежат на одной прямой? (слайд 21).
5. Докажем рассмотренные нами свойства треугольника.
Каждая группа получает карточку с заданием и копию соответствующего слайда на электронном носителе (для экономии времени компьютеры, за которыми будут работать ребята, должны быть подготовлены заранее, фрагмент презентации загружен и выведен на экран). Карточка содержит формулировку задачи, ее доказательство и чертеж. Необходимо подготовить выступление по теме и привести доказательство утверждений, отмеченных значком. (Приложение 1. Задание 3).
Задание № 3 (группа 1)
На сторонах треугольника построены равносторонние треугольники и около них описаны окружности. Докажите, что эти окружности пересекутся в одной точке, называемой точкой Торричелли? Воспользуйтесь подсказкой и докажите утверждение, отмеченное значком «?».
Задание № 3 (группа 2)
Докажите, что основания перпендикуляров, опущенных из любой точки окружности на три стороны вписанного в нее треугольника, лежать на одной прямой (прямая Симпсона)? Воспользуйтесь подсказкой и докажите утверждение, отмеченное значком «?».
Задание № 3 (группа 3)
Докажите, в треугольнике середины его сторон, середины отрезков, соединяющих его вершины с его ортоцентром, и основания его высот лежат на одной окружности (окружность Эйлера)?
Воспользуйтесь подсказкой и докажите утверждения, отмеченные значком «?».
Задание № 3 (группа 4)
Докажите, что в треугольнике центр описанной окружности, ортоцентр и центр тяжести лежат на одной прямой (прямая Эйлера)? (слайд 23)
Воспользуйтесь подсказкой и докажите утверждения, отмеченные значком «?».
Проверяем выполнение задания. Каждая группа «представляет» свою замечательную точку или линию и доказывает связанное с ней утверждение (слайды 12 — 13, 15-16, 18-20, 22-24).
В качестве «сувенира», после доказательства каждой теоремы можно посмотреть соответствующие «созвездия» на «звездном небе» (слайды 28-31, к которым можно перейти с помощью кнопки «астроном», появляющейся, когда доказательство закончено).
Во время выступления слушатели должны отметить, какие теоремы из курса планиметрии за 7-9 классы используются для доказательства каждого утверждения и заполняют таблицу (Приложение 3).
После выступления группа строит соответствующую точку или прямую, выбирая наиболее подходящий чертеж. (Приложение 2.).
Учитель контролирует, при необходимости помогает выполнить построения. По завершении этого этапа работы еще раз проговариваем алгоритм построения.
6. Точки Фейербаха. (Слайды 25, 32)
Ну, и это еще не все!
Вернемся на минуту к окружности Эйлера.
Эта окружность, найденная в XVIII веке великим ученым А.Эйлером, была заново открыта в следующем столетии учителем провинциальной гимназии в Германии. Звали его Карл Фейербах. Он был родным братом известного философа Людвига Фейербаха. Дополнительно К.Фейербах выяснил, что окружность девяти точек имеет еще четыре точки, тесно связанные с геометрией любого треугольника. Это точки ее касания с четырьмя окружностями специального вида.
Одна из этих окружностей вписанная, остальные три – вневписанные. Они вписаны в углы треугольника и касаются внешним образом его сторон. Точки касания этих окружностей с окружностью девяти точек К1, К2, К3 и К – называются точками Фейербаха. Таким образом, окружность девяти точек является в действительности окружностью тринадцати точек.
Ну, и это еще не все!
7. Доказательство свойства точек, симметричных ортоцентру относительно сторон треугольника.
Теперь, вспомнив практически весь материал по теме «Треугольник» и не только (таблица 1), рассмотрев методы доказательств четырех теорем, связанных с геометрией треугольника, мы можем вернуться к вашему сегодняшнему «открытию» и попробовать доказать его самостоятельно.
Доказать свойство точек, симметричных ортоцентру относительно сторон треугольника.
(Группы работают самостоятельно при необходимой помощи учителя)
Наиболее успешное доказательство представляется классу, остальные группы вносят дополнения и замечания (слайды 8, 10, 26, 27)
Ну, и это еще не все!
8. Следствия:
1. Вернемся еще раз к окружности Эйлера: 1) радиус окружности Эйлера равен половине радиуса описанной окружности ∆АВС (слайд 33); 2) ∆АВH, ∆АСH, ∆ВСH имеют ту же окружность Эйлера, что и ∆АВС (слайд 34).
2. Вернемся к точке Торричелли – т.Ферма: 1) отрезки AA1. BB1 и СС1 пересекаются в точке Торричелли и равны между собой; и 2) если точка Торричелли М лежит внутри треугольника, то сумма расстояний от точки М до вершин треугольника MА+MВ+MС – минимальна (слайд 35).
(А в каком случае т.Торичелли не лежит внутри треугольника?)
3. Вернемся к прямой Симпсона: 1) точки F1, E1, D1 — симметричные точке Р относительно сторон ∆АВС, лежат на одной прямой F1D1; 2) прямая F1D1 проходит через ортоцентр Н ∆АВС; 3) прямая Симпсона делит отрезок РН пополам: РК = КН (слайд 36).
4. Вернемся к прямой Эйлера: 1) точка пересечения медиан делит отрезок ОН в отношении 1:2, считая от точки О; 2) центр окружности Эйлера т.N – лежит на прямой Эйлера и делит отрезок OH пополам (слайды 37).
А еще есть Точка Нагеля, точка Жергонна, точка Брокара, точка Лемуана…
9. Подведение итогов урока (обобщение нового материала, анализ работы групп).
Домашнее задание:
- Выясните, как расположены точки, симметричные ортоцентру относительно середин сторон треугольника. Сформулируйте теорему и докажите ее.
- Подготовьте экспресс-сообщение об ученом, чьим именем была названа точка или линия, свойство которой вы сегодня доказывали (Торричелли, Симпсон, Эйлер, Фейербах).
Литература:
- Е.Д. Куланин, С.Н.Федин «Геометрия треугольника в задачах», Москва, книжный дом «Либроком», 2009 г.
- И.М.Смирнова, В.А.Смирнов «Геометрия. Нестандартные и исследовательские задачи», учебное пособие 7 -11, Москва, Мнемозина, 2004 г.
- «Энциклопедический словарь юного математика», Москва, «Педагогика», 1989г.
📸 Видео
Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать
7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать
Как разделить окружность на 3 равные части или как вписать равнобедренный треугольник в окружностьСкачать
Вписанный в окружность прямоугольный треугольник.Скачать
Вписанная и описанная окружности | Лайфхак для запоминанияСкачать
Построение медианы в треугольникеСкачать
Вписанная и описанная около равнобедренного треугольника, окружностьСкачать
Как поделить окружность на 3 равные части. Очень просто. Уроки черчения.Скачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Построение высоты в треугольникеСкачать