Пусть 




Можно доказать, что точка M имеет при данном отображении единственный образ — точку М ′ , а для точки М ′ существует единственный прообраз — точка М .
Таким образом, получаем биективное отображение пространства на себя, т. е. преобразование пространства, которое называют параллельным переносом на вектор 
Определение. Параллельным переносом на вектор 


Иногда параллельный перенос называют коротко переносом. При этом вектор 



Из определения следует, что параллельный перенос задаётся либо вектором, либо парой соответствующих точек ( М, М ′ ) .
Если при переносе на вектор 







Перенос на нулевой вектор 

5.2. Параллельный перенос в координатах
Пусть в прямоугольной системе координат Охyz задан вектор 

Так как M ′ = 







Соотношения (1) называются формулами параллельного переноса пространства на вектор 
Докажем, что параллельный перенос пространства есть движение . Пусть: A ( x 1 ; y 1 ; z 1 ) и C ( x 2 ; y 2 ; z 2 ) — данные точки; A ′ ( 












Расстояние между точками А и C равно

Найдём расстояние между точками А ′ и C ′ .
Учитывая (2), получаем
| A ′ C ′ | = 
= 
Таким образом, при параллельном переносе расстояние между точками сохраняется. Значит, параллельный перенос есть движение.
5.3. Свойства параллельного переноса
Можно доказать, что параллельный перенос отображает :
— прямую на параллельную ей прямую либо на себя;
— луч на сонаправленный с ним луч;
— вектор 

— плоскость на параллельную ей плоскость либо на себя.
Докажем, например, что параллельный перенос отображает плоскость на параллельную ей плоскость или на себя.
Действительно, параллельный перенос — движение, поэтому он отображает плоскость α на некоторую плоскость α′ . Докажем, что α′ || α или α′ совпадает с α .
На плоскости α выберем две пересекающиеся прямые a и b ; a ∩ b = O.
Пусть 

Так как любое преобразование отображает пересечение фигур на пересечение их образов и прямые a и b пересекаются в точке O, то пересекаются и прямые a ′ и b ′ в такой точке O ′ , что O ′ = 
Рассмотрим вопрос о неподвижных точках, неподвижных прямых и неподвижных плоскостях при параллельном переносе.
Неподвижных точек параллельный перенос на ненулевой вектор не имеет.
Неподвижной прямой при параллельном переносе на ненулевой вектор 


Неподвижной плоскостью при параллельном переносе на ненулевой вектор 


Параллельный перенос, отображая любой вектор на себя, не меняет ориентацию пространства, следовательно, является движением первого рода.
Рассмотрим композицию двух переносов, заданных векторами 





Пусть М — любая точка пространства. Перенос на вектор 














Таким образом, композиция переносов на векторы 



Так как 







5 .4. Скользящая симметрия
Среди преобразований пространства важное место занимает «скользящая симметрия», представляющая собой композицию симметрии S α относительно плоскости α и параллельного переноса на вектор 
Отметим ряд характерных свойств скользящей симметрии:
— скользящая симметрия является движением (как композиция двух движений);
— скользящая симметрия не имеет неподвижных точек;
— любая прямая плоскости α , параллельная вектору переноса, является неподвижной прямой скользящей симметрии; на каждой из них индуцируется параллельный перенос;
— неподвижной плоскостью скользящей симметрии является не только плоскость симметрии α (на ней индуцируется параллельный перенос на вектор 


— скользящая симметрия меняет ориентацию тетраэдра (значит, и ориентацию пространства), т. е. является движением второго рода;
— преобразованием, обратным скользящей симметрии, заданной плоскостью α и вектором 

Попробуйте доказать самостоятельно, что композиция двух центральных симметрий есть параллельный перенос, причём Z B ∘ Z A = 2 
Видео:Параллельный перенос. Симметрия. Поворот | МатематикаСкачать

Параллельный перенос
Параллельный перенос — это преобразование плоскости, при котором точки смещаются в одном и том же направлении на одно и то же расстояние.
Строгое определение параллельного переноса даётся либо через декартовы координаты, либо через вектор.
1) Введём на плоскости декартовы координаты x, y.
Параллельный перенос — это такое преобразование фигуры F, при котором её произвольная точка (x;y) переходит в точку (x+a; y+b), где a и b — некоторые числа, одинаковые для всех точек (x;y) фигуры F.
Формулы параллельного переноса

то параллельный перенос задаётся формулами:
Говорят также, что A1 является образом точки A при параллельном переносе на вектор (a; b). Точка A называется прообразом.
2) Параллельный перенос на данный вектор ā называется отображение плоскости на себя, при котором каждая точка A отображается в такую точку A1, то вектор AA1 равен вектору ā:
Свойства параллельного переноса
1) Параллельный перенос есть движение (то есть параллельный перенос сохраняет расстояние).
2) При параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние.
3) При параллельном переносе каждая прямая переходит в параллельную ей прямую (или в себя).
4) Каковы бы ни были точки A и A1, существует единственный параллельный перенос, при котором точка A переходит в точку A1.
В алгебре параллельный перенос широко используется для построения графиков функций.
Видео:Геометрия 9 класс (Урок№29 - Параллельный перенос.)Скачать

Please wait.
Видео:11 класс, 12 урок, Параллельный переносСкачать

We are checking your browser. mathvox.ru
Видео:9 класс, 32 урок, Параллельный переносСкачать

Why do I have to complete a CAPTCHA?
Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.
Видео:Урок 8. Параллельный перенос. Декартовы координаты на плоскости.Скачать

What can I do to prevent this in the future?
If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.
If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.
Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.
Cloudflare Ray ID: 6c64adc708401646 • Your IP : 178.45.231.185 • Performance & security by Cloudflare
🌟 Видео
Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

6 .7 кл Построение параллельных прямых.Как построить параллельные прямыеСкачать

Параллельный перенос. Координаты точек при параллельном переносе. Геометрия 8 классСкачать

9 класс. Параллельный переносСкачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Геометрия и группы. Алексей Савватеев. Лекция 2.3. Параллельный переносСкачать

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Геометрия 9 класс (Урок№30 - Поворот.)Скачать

9 класс. Геометрия. Геометрические преобразования. Движение. Симметрия. Гомотетия. Подобие. Урок #8Скачать

Параллельный перенос.Скачать

Построение проекции вектора на осьСкачать

9 класс параллельный перенос. Построение игур при параллельном переносе.Скачать

Задание № 1302 - Геометрия 9 класс (Атанасян)Скачать

Геометрия 11 класс (Урок№4 - Движения в пространстве.)Скачать










