Построение правильных треугольников в окружности

Как начертить равносторонний треугольник

Построение правильных треугольников в окружности

Из этого материала вы узнаете, как с помощью циркуля построить правильный треугольник. Напомним, что треугольник является правильным, если длина всех его сторон одинакова, а каждый из углов составляет 60°.

На листе бумаги отметьте произвольную точку. Установите в эту точку иглу циркуля и нарисуйте окружность.

Построение правильных треугольников в окружности

Установите иглу циркуля в любую произвольную точку, лежащую на окружности, и нарисуйте вторую окружность с центром в этой точке.

При этом не меняйте раствор циркуля, то есть радиус первой окружности должен быть равен радиусу второй окружности.

Построение правильных треугольников в окружности

Отметьте точки пересечения окружностей.

Построение правильных треугольников в окружности

Соедините полученные точки линией. Полученный отрезок будет первой стороной треугольника.

Построение правильных треугольников в окружности

Далее, через центры обеих окружностей нужно провести прямую линию.

Построение правильных треугольников в окружностиПостроение правильных треугольников в окружности

Таким образом, у вас получилось три точки, которые будут тремя вершинами треугольника.

Построение правильных треугольников в окружности

Соедините все три точки между собой.

Построение правильных треугольников в окружности

Полученный треугольник имеет одинаковую длину сторон, а величина каждого его угла составляет 60°, а значит он правильный.

Видео:Построение равностронего треугольника.Скачать

Построение равностронего треугольника.

Треугольник вписанный в окружность

Построение правильных треугольников в окружности

Видео:Геометрия 9 класс (Урок№26 - Построение правильных многоугольников.)Скачать

Геометрия 9 класс (Урок№26 - Построение правильных многоугольников.)

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Построение правильных треугольников в окружности

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = fracab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Видео:Построение пятиугольника циркулемСкачать

Построение пятиугольника циркулем

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

Построение правильных треугольников в окружности

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Видео:Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Построение

Построение правильного треугольника

Способ 1. Начертим окружность с центром в точке O, проведем диаметр ED. Обозначим на нем точку K так, что OK=KD. Теперь проведем через точку K хорду MN, перпендикулярную OD. Соединим точки E, M и N. Полученный треугольник EMN — равносторонний.

Построение правильных треугольников в окружности

Способ 2. Начертим окружность с центром O и радиусом OA. Начертим вторую окружность с таким же радиусом, проходящую через точку O. Соединим центры этих окружностей и одну из точек пересечения (в данном случае с точкой B). Полученный треугольник — равносторонний.

Построение правильных треугольников в окружности

Способ 3. Построим окружность с центром O. Далее построим некоторую точку, принадлежащую окружности. Из данной точки на окружность раствором циркуля, равным R, откладываем последовательно отрезки (их 6). Полученные точки соединяем через 1.

Построение правильных треугольников в окружности

Способ 4. Строим окружность произвольного радиуса, с центром в точке А. Проводим прямую, через точку А. Отмечаем точки пересечения прямой и окружности С и В. Строим вторую окружность, с радиусом, равным радиусу, первой окружности и центром в точке С. Отмечаем точки пересечения окружностей F и D. Соединяем точки В,D,F. Треугольник BDF — равносторонний.

Построение правильных треугольников в окружности

Построение правильного четырехугольника (квадрата)

Способ 1 (рис. 1). Проводим в окружности 2 перпендикулярных диаметра (Шаг 1). Точки пересечения этих диаметров с окружностью являются вершинами квадрата (Шаг 2).

Построение правильных треугольников в окружности

Способ 2 (рис. 2). Как и в первом способе, проводим в окружности 2 перпендикулярных диаметра. Из точек пересечения диаметров с окружностью строим дуги с радиусом R, равным радиусу окружности (Шаг 1). Точки пересечения дуг EG и FH соединяем соответственно линиями

(Шаг 2). Точки пересечения этих линий с окружностью и являются вершинами квадрата.

Способ 3. Постройте отрезок AB, равный будущей стороне квадрата a. Постройте 2 окружности, с центрами в точках A и B и радиусом AB. Проведите прямую GH через точки пересечения окружностей. Постройте окружность, проходящую через концы отрезка и имеющую d=AB, и вторую, также проходящую через точки A и B, но с центром в точке F пересечения первой окружности с прямой GH. Соедините точки A, B, D, C. Четырехугольник ABDC — квадрат.

Построение правильных треугольников в окружности

Построение правильного пятиугольника

Способ 1. Строим окружность произвольного радиуса R и проводим два взаимно перпендикулярных диаметра АВ и СD. Делим пополам радиус АО точкой Е. Из Е радиусом ЕС проводим дугу CF, пересекая ею диаметр АВ в точке F. Из С радиусом CF проводим дугу FG, пересекая ею данную окружность в точке G; CG (равная CF) есть одна сторона искомой фигуры. Проводим тем же радиусом дугу из точки G как из центра, получаем ещё одну вершину Н искомой фигуры и т. д. Аналогично находим вершины K и L. CGHKL — правильный пятиугольник.

Построение правильных треугольников в окружности

Способ 2.Чтобы построить правильный пятиугольник возьмем окружность произвольного радиуса с центром в точке О. Проведем 2 взаимно перпендикулярных диаметра. Отметим середину радиуса и проведем окружность, проходящую через точку O, с центром в полученной точке.

Построение правильных треугольников в окружности Построение правильных треугольников в окружностиПостроение правильных треугольников в окружности

Проведем отрезок из центра маленькой окружности к точке пересечения большой окружности и ее радиуса. Построим окружность с центром в этой же точке так, чтобы она соприкасалась с маленькой окружностью.

Построение правильных треугольников в окружностиПостроение правильных треугольников в окружности

Из точек пересечения большой и полученной окружностей проведем окружности как показано на рисунке. Для получения пятиугольника нужно соединить точки через одну.

Построение правильных треугольников в окружности Построение правильных треугольников в окружностиПостроение правильных треугольников в окружности

Способ 3. Приближенное построение правильного пятиугольника. А.Дюрером оно проводилось при условии неизменности раствора циркуля, что повышает точность построения. Способ построения описан Дюрером так: «»Однако пятиугольник, построенный неизменным раствором циркуля, делай так. Проведи две окружности так, чтобы каждая из них проходила через центр другой. Два центра соедини прямой линией. Это и будет стороной пятиугольника. Точки пересечения окружностей обозначь сверху С, снизу D и проведи прямую линию CD. После этого возьми циркуль с неизменным раствором и, установив одну его ножку в точку D, другой проведи через оба центра А и В дугу до пересечения её с обеими окружностями. Точки пересечения обозначь через E и F, а точку пересечения с прямой CD обозначь буквой G. Теперь проведи прямую линию через Е и G до пересечения с линией окружности. Эту точку обозначь Н. Затем проведи другую линию через F и G до пересечения с линией окружности и поставь здесь J. Соединив J,A и H,B прямыми, получим три стороны пятиугольника. Дав возможность двум сторонам такой длины достигнуть совпадения в точке K из точек J и H, получим некоторый пятиугольник».

Способ 4. Пусть AB — заданная сторона пятиугольника — равна a. Восстановим из B перпендикуляр к AB и отложим на нем отрезок BC=a/2. Точку C соединим с точкой A. На прямой AC отложим отрезок DC=BC=a/2; затем на продолжении AB отложим AE=AD. Тогда BE равняется диагонали пятиугольника. Для построения вершин описываем из центров A и B дуги радиусами AB и BE, и в их пересечении находим вершины F, G, H.

Построение правильных треугольников в окружности

Построение правильного шестиугольника

Построим окружность с центром в точке О. Проведем диаметр окружности. Проведем окружность того же радиуса с центром в точке пересечения диаметра с окружностью.

Построение правильных треугольников в окружности Построение правильных треугольников в окружностиПостроение правильных треугольников в окружности

Проведем прямые через центр начальной окружности и точки пересечения полученной дуги с этой окружностью и соединим точки пересечения всех прямых с исходной окружностью.

Построение правильных треугольников в окружностиПостроение правильных треугольников в окружности

Получаем правильный шестиугольник.

Способ 2. Построим окружность с центром O. Далее построим некоторую точку, принадлежащую окружности. Из данной точки на окружность раствором циркуля, равным R, откладываем последовательно отрезки (их 6). Полученные точки соединяем.

Построение правильных треугольников в окружности Построение правильных треугольников в окружностиПостроение правильных треугольников в окружности

Построение правильного семиугольника

Чтобы начать построение, начертите произвольную окружность и обозначьте ее центр буквой О. Затем проведите радиус этой окружности в любом направлении. Точку пересечения радиуса с окружностью обозначьте буквой А. После этого переставьте циркуль в точку А и проведите окружность или дугу того же радиуса, что и у исходной окружности (ОА). Данная дуга пересечет исходную окружность в двух точках. Обозначьте их буквами В и С. Соедините две полученные точки. При этом отрезок ВС пересечет радиус ОА. Точку их пересечения обозначьте буквой D. Образовавшиеся при этом отрезки ВD и DC будут равны между собой и каждый из них будет приблизительно равен стороне правильного семиугольника, который можно вписать в исходную окружность. Отмерьте циркулем расстояние ВD (или DC) и, начиная с любой точки на окружности, отложите это расстояние шесть раз. Затем соедините все семь точек. Так вы получите семиугольник, который с небольшой погрешностью можно назвать правильным. Все его стороны и углы будут приблизительно равны.

🔥 Видео

Геометрия - Построение правильного треугольникаСкачать

Геометрия - Построение правильного треугольника

Построение правильных многоугольниковСкачать

Построение правильных многоугольников

Как разделить окружность на 3 равные части или как вписать равнобедренный треугольник в окружностьСкачать

Как разделить окружность на 3 равные части или как вписать равнобедренный треугольник в окружность

Деление окружности на 3, 4, 5, 6 и 7 равных частейСкачать

Деление окружности на 3, 4, 5, 6 и 7 равных частей

9 класс, 25 урок, Построение правильных многоугольниковСкачать

9 класс, 25 урок, Построение правильных многоугольников

Деление окружности на пять равных частей. Урок 7. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

Деление окружности на пять равных частей. Урок 7. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)

Построение треугольников и окружностейСкачать

Построение треугольников и окружностей

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Деление окружности на равные части. Урок 6. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

Деление окружности на равные части. Урок 6. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

ПОСТРОИТЬ ПРАВИЛЬНЫЙ ПЯТИУГОЛЬНИК [construction a regular pentagon]Скачать

ПОСТРОИТЬ ПРАВИЛЬНЫЙ ПЯТИУГОЛЬНИК [construction a regular pentagon]

Построение правильных многоугольников 9 класСкачать

Построение правильных многоугольников   9 клас

Построение правильного многоугольникаСкачать

Построение правильного многоугольника

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны
Поделиться или сохранить к себе: