Примеры:
1. Даны прямая и точка на ней. Построить прямую проходящую через данную точку и перпендикулярную к данной прямой.
Дано: прямая m, Mm.
Построить: МPm.
Решение:
Произвольно строим с помощью линейки прямую m и отмечаем на ней точку М.
На лучах прямой m, исходящих из точки М, с помощью циркуля откладываем равные отрезки МА и МВ (МА = МВ). Для этого строим окружность с центром в точке М, при этом всю окружность строить не обязательно, достаточно сделать пометки по разные стороны от точки М (смотри выделенное красным).
Затем строим две окружности с центрами в точках А и В радиуса АВ (полностью окружности строить необязательно, смотри выделенное фиолетовым и красным цветом).
Данные окружности пересекаются в двух точках, обозначим их Р и Q. Проведем с помощью линейки через точку М и одну из точек Р или Q прямую, например, МР.
Докажем, что прямая МР — искомая прямая, т.е. что МPm.
Рассмотрим треугольник АРВ.
АР = ВР, т.к. по построению это радиусы одинаковых окружностей, следовательно, АРВ — равнобедренный. По построению МА = МВ, т.е. МР — медиана равнобедренного треугольника, тогда по свойству равнобедренного треугольника МР и высота, т.е. МPm. Что и требовалось доказать.
2. Даны прямая и точка не лежащая на этой прямой. Построить прямую проходящую через данную точку и перпендикулярную к данной прямой.
Дано: прямая m, Mm.
Построить: МNm.
Решение:
Произвольно строим с помощью линейки прямую m и отмечаем точку М, не лежащую на прямой m.
Далее строим окружность с центром в данной точке М, пересекающую прямую m в двух точках, которые обозначим буквами А и В (всю окружность строить необязательно, смотри выделенное красным цветом).
Затем построим две окружности с центрами в точках А и В, проходящие через точку М (полностью окружности строить необязательно, смотри выделенное синим и зеленым цветом). Эти окружности пересекутся в точке М и еще в одной точке, которую обозначим буквой N. Проведем прямую МN.
Докажем что, прямая МN — искомая, т.е. МNm.
В АМN и ВМN: АМ = АN = ВМ = ВN — радиусы, МN — общая, следовательно, АМN =ВМN (по трем сторонам), значит, углы ВМС и АМС равны (С точка пересечения прямых m и МN). Отсюда следует, что отрезок МС — биссектриса равнобедренного треугольника АМВ (АМ = ВМ — радиусы) с основанием АВ, тогда по свойству равнобедренного треугольника АМ — высота, значит, МNАВ, т.е. МNm.
Поделись с друзьями в социальных сетях:
Видео:1 2 4 сопряжение окружностейСкачать
Построение перпендикуляра к линии
Видео:Перпендикуляр к прямой через заданную точку.Скачать
Построение перпендикуляра из данной точки к прямой
Из данной точки С проводят дугу окружности произвольного радиуса так чтобы она пересекала прямую, заданную отрезком АВ, в точках D и F. Из этих точек описывают две дуги окружности радиусом R, несколько большим половины отрезка DF, до пересечения в точке Е. Точки С и Е соединяют прямой которая и будет искомым перпендикуляром.
Видео:Построение перпендикуляра к прямойСкачать
Построение перпендикуляра из данной точки к кривой линии
Построение нормали к кривой проходящей через точку А, не принадлежащую кривой m, можно выполнить следующим образом:
2. Отметим точки пересечения окружностей с кривой -1, 11, 2, 21, 3, 31, 4, 41;
3. Из концов хорд восстановим перпендикуляры (при этом перпендикуляры, восстановленные из точек 1, 2, 3, 4, имеют противоположное направление перпендикулярам, восстановленным из точек 11, 21, 31, 41);
4. На полученных перпендикулярах отложим отрезки, равные длине соответствующих хорд;
5. Полученные точки соединим плавной кривой l;
Видео:Сопряжение двух пересекающихся прямых. Урок 9. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать
Построение перпендикуляра двумя окружностями
Через точку O провести прямую, перпендикулярную данной прямой a.
Возможно два варианта:
- точка O лежит на прямой a;
- точка О не лежит на прямой a.
Рассмотрим поочередно оба варианта.
Шаг 1. Проводим окружность с произвольным радиусом r с центром в точке O. Окружность пересекает прямую в точках A и B.
Шаг 2. Из точек A и B проводим окружности с радиусом AB. Пусть тоска С – точка пересечения этих окружностей.
Обращаю ваше внимание на то что точки А и В мы получили на первом шаге, при построении окружности с произвольным радиусом.
Шаг 3. Искомая прямая проходит через точки С и О.
Проведем отрезки AC и CB. Δ ACO = Δ BCO по третьему признаку равенства треугольников (AO = OB, AC = CB, по построению, CO – общая). ∠ COA = ∠ COB = 90 °. Прямая CO ⊥ AB.
Как было уже сказано выше все четыре угла образованных при пересечении двух прямых перпендикулярны если хотя бы один из них перпендикулярен, т.е. является прямым и равен 90 градусов.
Второй вариант такой же простой только имеет немного другой принцип поиска наших начальных точек А и В.
Шаг 1. Из точки O проводим окружность некоторым радиусом r, таким чтобы окружность пересекала прямую a. Пусть A и B – точки пересечения окружности с прямой a.
Шаг 2. Проведем окружности тем же радиусом r с центрами в точках A и B. Пусть точка O1 – точка пресечения этих окружностей, лежащая в полуплоскости, отличной от той, в которой лежит точка O.
Шаг 3. Проведем через точки O и O1 прямую. Это и будет искомая прямая.
Пусть прямые OO1 и AB пересекаются в точке С. Δ AOB = Δ BO1A по третьему признаку равенства треугольников (AO = OB = AO1 = O1B, по построению, AB – общая). Отсюда следует, что ∠ OAС = ∠ O1AC. Δ OAC = Δ O1AC по первому признаку равенства треугольников (AO = AO1, по построению, ∠ OAС = ∠ O1AC, AС – общая). Следовательно ∠ OСA = ∠ O1CA, а так как эти углы смежные, то они прямые. Поэтому OC – перпендикуляр, опущенный из точки O на прямую a.
Т. е. с помощью циркуля и линейки мы можем стоить перпендикулярные прямые, независимо от того точка через какую должен проходить перпендикуляр находиться на отрезке или за его пределами. Оба варианта имеют три шага, единственная сложность в том что бы правильно найти начальные точки А и В.
🎬 Видео
Касательные к окружностиСкачать
Построение перпендикулярных прямых.7 классСкачать
Построение перпендикуляраСкачать
Сопряжение окружностейСкачать
2-Построение перпендикуляра между двумя точками на прямойСкачать
Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)Скачать
Построение перпендикуляра к прямой через точку не лежащую на этой прямой циркулемСкачать
Сверхсветовая скорость во ВселеннойСкачать
Внешняя касательная к двум окружностямСкачать
Построение касательной к окружностиСкачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Построение серединного перпендикуляра. Деление отрезка пополамСкачать
2. Построения с помощью циркуля и линейки.Скачать
Внешнее сопряжение двух дуг окружностей третьей дугой. Урок13.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать
Построение перпендикуляра к прямой при помощи циркуляСкачать
7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать