Последний элемент вектора маткад

Последний элемент вектора маткад

Mathcad содержит функции для обычных в линейной алгебре действий с массивами. Эти функции предназначены для использования с векторами и матрицами. Если явно не указано, что функция определена для векторного или матричного аргумента, не следует в ней использовать массивы как аргумент. Обратите внимание, что операторы, которые ожидают в качестве аргумента вектор, всегда ожидают вектор-столбец, а не вектор-строку. Чтобы заменить вектор-строку на вектор-столбец, используйте оператор транспонирования [Ctrl]1.

Если Вы используете Mathcad PLUS, Вы будете также иметь несколько дополнительных функций, определенных для векторов. Эти функции скорее предназначены для анализа данных, чем для действий с матрицами. Они обсуждены в Главе “Встроенные функции”.

Следующие таблицы перечисляют векторные и матричные функции Mathcad. В этих таблицах

  • A и B — массивы (векторы или матрицы).
  • v — вектор.
  • M и N — квадратные матрицы.
  • z — скалярное выражение.
  • Имена, начинающиеся с букв m, n, i или j — целые числа.

Размеры и диапазон значений массива

В Mathcad есть несколько функций, которые возвращают информацию относительно размеров массива и диапазона его элементов. Рисунок 10 показывает, как эти функции используются.

Имя функцииВозвращается.
rows(A)Число строк в массиве A. Если А — скаляр, возвращается 0.
cols(A)Число столбцов в массиве A. Если A скаляр, возвращается 0.
length(v)Число элементов в векторе v.
last(v)Индекс последнего элемента в векторе v.
max(A)Самый большой элемент в массиве A. Если A имеет комплексные элементы, возвращает наибольшую вещественную часть плюс i, умноженную на наибольшую мнимую часть.
min(A)Самый маленький элемент в массиве A. Если A имеет комплексные элементы, возвращает наименьшую вещественную часть плюс i, умноженную на наименьшую мнимую часть.

Последний элемент вектора маткад

Рисунок 10: Векторные и матричные функции для нахождения размера массива и получения информации относительно диапазона элементов.

Специальные типы матриц

Можно использовать следующие функции, чтобы произвести от массива или скаляра матрицу специального типа или формы. Функции rref, diag и geninv доступны только в Mathcad PLUS.

Имя функцииВозвращается.
identity(n)n x n единичная матрица (матрица, все диагональные элементы которой равны 1, а все остальные элементы равны 0).
Re(A)Массив, состоящий из элементов, которые являются вещественными частями элементов A.
Im(A)Массив, состоящий из элементов, которые являются мнимыми частями элементов A.
Е diag(v)Диагональная матрица, содержащая на диагонали элементы v.
Е geninv(A)Левая обратная к A матрица L такая, что LПоследний элемент вектора маткадA = I, где I — единичная матрица, имеющая то же самое число столбцов, что и A. Матрица А — m x n вещественная матрица, где m>=n.
Е rref(A)Ступенчатая форма матрицы A.

Последний элемент вектора маткад

Рисунок 11: Функции для преобразования массивов. Обратите внимание, что функции diag и rref являются доступными только в Mathcad PLUS.

Специальные характеристики матрицы

Можно использовать функции из следующей таблицы, чтобы найти след, ранг, нормы и числа обусловленности матрицы. Кроме tr, все эти функции доступны только в Mathcad PLUS.

Имя функцииВозвращается.
tr(M)Сумма диагональных элементов, называемая следом M.
Е rank(A)Ранг вещественной матрицы A.
Е norm1(M)L1 норма матрицы M.
Е norm2(M)L2 норма матрицы M.
Е norme(M)Евклидова норма матрицы M.
Е normi(M)Равномерная норма матрицы M.
Е cond1(M)Число обусловленности матрицы M, основанное на L1 норме.
Е cond2(M)Число обусловленности матрицы M, основанное на L2 норме.
Е conde(M)Число обусловленности матрицы M, основанное на евклидовой норме.
Е condi (M)Число обусловленности матрицы M, основанное на равномерной норме.

Формирование новых матриц из существующих

В Mathcad есть две функции для объединения матриц вместе — бок о бок, или одна над другой. В Mathcad также есть функция для извлечения подматрицы. Рисунки 12 и 13 показывают некоторые примеры.

Имя функцииВозвращается.
augment (A, B)Массив, сформированный расположением A и B бок о бок. Массивы A и B должны иметь одинаковое число строк.
stack (A, B)Массив, сформированный расположением A над B. Массивы A и B должны иметь одинаковое число столбцов.
submatrix (A, ir, jr, ic, jc)Субматрица, состоящая из всех элементов, содержащихся в строках с ir по jc и столбцах с ic по jc. Чтобы поддерживать порядок строк и-или столбцов, удостоверьтесь, что ir

Последний элемент вектора маткад

Рисунок 12: Объединение матриц функциями stack и augment.

Последний элемент вектора маткад

Рисунок 13: Извлечение субматрицы из матрицы при помощи функции submatrix.

Собственные значения и собственные векторы

В Mathcad существуют функции eigenval и eigenvec для нахождения собственных значений и собственных векторов матрицы. В Mathcad PLUS также есть функция eigenvecs для получения всех собственных векторов сразу. Если Вы используете Mathcad PLUS, Вы будете также иметь доступ к genvals и genvecs для нахождения обобщенных собственных значений и собственных векторов. Рисунок 14 показывает, как некоторые из этих функций используются.

Возвращается.

Имя функции
eigenvals (M)Вектор, содержащий собственные значения матрицы M.
eigenvec (M, z)Матрица, содержащая нормированный собственный вектор, соответствующий собственному значению z квадратной матрицы M.
Е eigenvecs (M)Матрица, содержащая нормированные собственные векторы, соответствующие собственным значениям квадратной матрицы M. n-ный столбец возвращенной матрицы — собственный вектор, соответствующий n-ному собственному значению, возвращенному eigenvals.
Е genvals (M,N)Вектор v собственных значений, каждое из которых удовлетворяет обобщенной задаче о собственных значениях . Матрицы M и N — вещественнозначные квадратные матрицы одного размера. Вектор x — соответствующий собственный вектор.
Е genvecs (M,N)Матрица, содержащая нормализованные собственные векторы, соответствующие собственным значениям в v, векторе, возвращенном genvals. n-ный столбец этой матрицы — собственный вектор x, удовлетворяющий обобщенной задаче о собственных значениях . Матрицы M и N — вещественнозначные квадратные матрицы одного размера.

Последний элемент вектора маткад

Рисунок 14: Нахождение собственных значений и собственных векторов.

Последний элемент вектора маткад

Рисунок 15: Использование eigenvecs для одновременного нахождения всех собственных векторов.

Если Вы используете Mathcad PLUS, Вы будете иметь доступ к некоторым дополнительным функциям для выполнения специальных разложений матрицы: QR, LU, Холесского, и по сингулярным базисам. Некоторые из этих функций возвращают две или три матрицы, соединенные вместе в одну большую матрицу. Используйте submatrix, чтобы извлечь эти две или три меньшие матрицы. Рисунок 16 показывает пример.

Имя функцииВозвращается.
Е cholesky(M)Нижняя треугольная матрица L такая, что LПоследний элемент вектора маткадL T =M. Матрица M должна быть симметричной положительно определенной. Симметрия означает, что M=M T , положительная определённость — что x T Последний элемент вектора маткадMПоследний элемент вектора маткадx>0 для любого вектора x Последний элемент вектора маткад0.
Е qr(A)Матрица, чьи первые n столбцов содержат ортогональную матрицу Q, а последующие столбцы содержат верхнюю треугольную матрицу R. Матрицы Q и R удовлетворяют равенству A=QПоследний элемент вектора маткадR. Матрица A должна быть вещественной.
Е lu(M)Матрица, которая содержит три квадратные матрицы P, L и U, расположенные последовательно в указанном порядке и имеющие с M одинаковый размер. L и U являются соответственно нижней и верхней треугольными матрицами. Эти три матрицы удовлетворяют равенству PПоследний элемент вектора маткадM=LПоследний элемент вектора маткадU .
Е svd(A)Матрица, содержащая две расположенные друг над другом матрицы U и V. Сверху находится U — размера m x n, снизу V — размера n x n. Матрицы U и V удовлетворяют равенству A=UПоследний элемент вектора маткадdiag(s)Последний элемент вектора маткадV T , где s — вектор, возвращенный svds(A). A должна быть вещественнозначной матрицей размера m x n, где m>=n.
Е svds(A)Вектор, содержащий сингулярные значения вещественнозначной матрицы размера m x n, где m>=n.

Последний элемент вектора маткад

Рисунок 16: Использование функции submatrix для извлечения результата из функции rq. Используйте submatrix, чтобы извлечь подобным образом результаты из функций lu и svd. Обратите внимание, что эти функции доступны только в Mathcad PLUS.

Решение линейной системы уравнений

Если Вы используете Mathcad PLUS, Вы сможете использовать функцию lsolve для решения линейной системы уравнений. Рисунок 17 показывает пример. Обратите внимание, что M не может быть ни вырожденной, ни почти вырожденной для использования с lsolve. Матрица называется вырожденной, если её детерминант равен нулю. Матрица почти вырождена, если у неё большое число обусловленности. Можно использовать одну из функций, описанных на странице 204, чтобы найти число обусловленности матрицы.

Возвращается.

Имя функции
Е lsolve (M, v)Вектор решения x такой, что MПоследний элемент вектора маткадx=v.

Если Вы не используете Mathcad PLUS, Вы всё-таки можете решать систему линейных уравнений, используя обращение матрицы, как показано в нижнем правом углу Рисунка 9.

Последний элемент вектора маткад

Рисунок 17: Использование lsolve для решения системы из двух уравнений с двумя неизвестными.

Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter

Видео:Урок 8. МКЭ в Mathcad. Векторы концевых усилийСкачать

Урок 8. МКЭ в Mathcad. Векторы концевых усилий

Векторы и матрицы в MathCAD

Нижняя граница индексации в MathCAD определена системной переменной ORIGIN. По умолчанию ORIGIN=0. Значение переменной можно переопределить. Например, ORIGIN=1.

Векторы и матрицы в MathCAD можно задавать путем ввода их элементов. Для ввода индекса элемента массива используется символ – [.

Поэлементный ввод массива Х

Вводимые символыОтображаемые символы
X [ 1 Shift+: 5X1:=5
X [ 2 Shift+: 8X2:= 8
X [ 3 Shift+: 10X3:= 10

Поэлементный ввод матрицы А

Вводимые символыОтображаемые символы
A [ 1,1 Shift+: 0.1A11 := 0.1
A [ 1,2 Shift+: -2.5A12 := -2.5
A [ 2,1 Shift+: -1.0A21 := -1.0
A [ 2,2 Shift+: 5.2A22 := 5.2

Последний элемент вектора маткад

Для операций с матрицами и векторами предназначена панель Matrix, которая открывается щелчком по кнопке Последний элемент вектора маткадв панели математических инструментов.

Последний элемент вектора маткад

ПанельMatrix содержит следующие кнопки:

Последний элемент вектора маткад– определение размеров матрицы;

Последний элемент вектора маткад– ввод элемента массива Последний элемент вектора маткад;

Последний элемент вектора маткад– вычисление матрицы, обратной к данной Последний элемент вектора маткад;

Последний элемент вектора маткад– вычисление определителя матрицы Последний элемент вектора маткад;

Последний элемент вектора маткад– оператор векторизации (поэлементные операции с векторами и матрицами) Последний элемент вектора маткад;

Последний элемент вектора маткад– определение столбца матрицы Последний элемент вектора маткад;

Последний элемент вектора маткад– транспонирование матрицы Последний элемент вектора маткад;

Последний элемент вектора маткад– определение ранжированной переменной;

Последний элемент вектора маткад– вычисление скалярного произведения векторов;

Последний элемент вектора маткад– вычисление векторного произведения векторов;

Последний элемент вектора маткад– вычисление суммы компонент вектора.

Последний элемент вектора маткад– визуализация цифровой информации.

Действия, которые необходимо выполнить, чтобы ввести матрицу в рабочий документ при помощи кнопки Последний элемент вектора маткадпанели Matrix:

1. Ввести с клавиатуры имя матрицы и знак присваивания;

2. Щелчком по кнопке Последний элемент вектора маткадоткрыть окно диалога:

Последний элемент вектора маткад

3. Определить число строк (Rows) и число столбцов (Columns) будущей матрицы;

4. Закрыть окно диалога, щелкнув по кнопке OK;

5. Ввести элементы матрицы, установив курсор в поле ввода, которое появится справа от знака присваивания:

Последний элемент вектора маткад

Последний элемент вектора маткад

Последний элемент вектора маткад

Последний элемент вектора маткад

Функции определения матриц и операции с блоками матриц:

matrix(m,n,f) – создает и заполняет матрицу A=<aij> размерности m на n, каждый элемент которой aij равен значению функции f(i,j);

diag(v) – создает диагональную матрицу, элементы главной диагонали которой хранятся в векторе v;

identity(n) – создает единичную матрицу порядка n;

augment(A,B) – из матриц А и В формируется третья матрица, первые столбцыкоторой содержат матрицу А, а последние — матрицу В (матрицы А и В должны иметь одинаковое число строк);

stack(A,B) – из матриц А и В формируется третья матрица, первые строкикоторой содержат матрицу А, а последние — матрицу В (матрицы А и В должны иметь одинаковое число столбцов);

submatrix(A,l,k,p,r) – формирует матрицу, которая является блоком матрицы А, расположенным в строках с l по k и в столбцах с p по r (l

Re(A) – возвращает матрицу (вектор) действительных частей матрицы (вектора) А с комплексными элементами;

Im(A) – возвращает матрицу (вектор) мнимых частей матрицы (вектора) А с комплексными элементами;

Функции вычисления различных числовых характеристик матриц:

last(v) – вычисление номера последнего элемента вектора v;

length(v) – вычисление количества элементов вектора v;

rows(A) – вычисление числа строк в матрице А;

cols(A) – вычисление числа столбцов в матрице А;

max(A) – вычисление наибольшего элемента в матрице (векторе) А;

min(A) – вычисление наименьшего элемента в матрице (векторе) А;

mean(A) – вычисление среднего значения матрицы (вектора) А;

tr(A) – вычисление следа (суммы диагональных элементов) квадратной матрицы А;

ranc(A) – вычисление ранга матрицы А;

Функции, реализующие численные алгоритмы:

rref(A) – приведение матрицы А к ступенчатому виду;

geninv(A) – вычисляет матрицу, левую обратную к матрице А, L∙A=E, где Е – единичная матрица размером n×n, L – прямоугольная матрица размером n×m, А – прямоугольная матрица размером m×n;

lsolve(A,b) – решение системы линейных алгебраических уравнений A∙x=b.

lu(A) – выполняет треугольное разложение матрицы А: A=С∙L∙U, где L и U – соответственно нижняя и верхняя треугольные матрицы, все четыре матрицы квадратные и одного порядка;

qr(A) – выполняет разложение матрицы А: A=Q∙R, где Q – ортогональная матрица, а R – верхняя треугольная матрицы;

cholesky(A) – выполняет разложение матрицы А по схеме Холецкого: А=L∙L T , где А — квадратная, симметричная, положительно определенная матрица, L – треугольная матрица;

sort(v) – сортировка элементов вектора v в порядке возрастания их значений;

reverse(v) – перестановка элементов вектора v в обратном порядке;

csort(A,n) – перестановка строк матрицы А таким образом, чтобы отсортированным оказался n-й столбец;

rsort(A,n) – перестановка столбцов матрицы А таким образом, чтобы отсортированной оказалась n-я строка.

ЗАДАЧА 1. Сформировать матрицу H из элементов матрицы D, исключив третий столбец и вторую строку.

Последний элемент вектора маткад

ЗАДАЧА 2. Сформировать матрицу H следующим образом. Первая и последняя строки равны строкам матрицы D, остальные совпадают с матрицей C.

Последний элемент вектора маткад

ЗАДАЧА 3. Сформировать матрицу таким образом, чтобы элементы на главной диагонали были равны 1, выше главной диагонали – 2, а ниже – 3.

Последний элемент вектора маткад

ЗАДАЧА 4. Элементы матрицы формируются по формуле Последний элемент вектора маткад. Сформировать вектор из максимальных элементов столбцов матрицы А. Найти сумму элементов матрицы, расположенных в четных строках.

Последний элемент вектора маткад

ЗАДАЧА 5. Выполнить действия над матрицами А, В, С:

Последний элемент вектора маткад

ЗАДАЧА 6. Решить систему линейных уравнений при помощи правила Крамера:

Для решения поставленной задачи необходимо выполнить следующие действия:

1. Сформировать матрицу системы А и вектор правых частей b.

2. Вычислить главный определитель .

3. Сформировать вспомогательные матрицы (удобно скопировать матрицу А несколько раз и последовательно заменять в ней столбцы на вектор b) для вычисления определителей i;

4. Вычислить определители i;

5. Найти решение системы по формуле xi=∆i/∆.

Последний элемент вектора маткад

Последний элемент вектора маткад

ЗАДАЧА 7. Решить систему линейных уравнений методом обратной матрицы.

1. Сформировать матрицу коэффициентов и вектор свободных членов системы.

2. Решить систему, представив вектор неизвестных как произведение матрицы, обратной к матрице системы и вектора свободных членов.

Последний элемент вектора маткад

ЗАДАЧА 8. Решить систему линейных уравнений методом Гаусса.

Порядок решения задачи:

1. Сформировать матрицу коэффициентов и вектор свободных членов заданной системы.

2. Сформировать расширенную матрицу системы при помощи функции augment(A,b);

3. Используя функцию rref(A), привести расширенную матрицу к ступенчатому виду.

4. Получить решение системы, выделив последний столбец матрицы, полученной в предыдущем пункте.

5. Выполнить проверку Ax-B=0.

Последний элемент вектора маткад

ЗАДАЧА 9. Решить систему при помощи функции lsolve:

Последний элемент вектора маткад

Последний элемент вектора маткад

Пример системы, которая не имеет решений:

Последний элемент вектора маткад

Последний элемент вектора маткад

Пример системы, которая имеет бесконечное множество решений

Последний элемент вектора маткад Последний элемент вектора маткадПоследний элемент вектора маткад

ЗАДАЧА 10. Решить систему при помощи решающего блока.

Решающий блок начинается с ключевого слова Given (Дано), которое необходимо ввести с клавиатуры.

Правее и ниже ключевого слова записываются уравнения системы.

Знак равенства в уравнениях вводится при помощи клавиш Ctrl+= или выбирается на панели инструментов Boolean.

Правее и ниже последнего уравнения системы вводится функция Find(x1,x2,…xn) (Найти), в скобках перечисляются имена переменных, значения которых нужно найти.

Численное решение системы можно получить, поставив знак равенства после функции Find(x1,x2,…xn).

Символьное решение получится, если после функции Find(x1,x2,…xn) указать знак стрелки, который находится в панели инструментов Symbolic (Ctrl+.).

Видео:7. MathCad. Векторы и матрицыСкачать

7. MathCad. Векторы и матрицы

Последний элемент вектора маткад

Столбец чисел называется вектором, а прямоугольная таблица чисел — матрицей. Общий термин для вектора или матрицы — массив. При работе с матрицами используется панель инструментов “Матрицы”:

Последний элемент вектора маткад

Обращение к элементам массива

Обращение к элементу массива осуществляется путем записи имени массива и соответствующих индексных выражений, количество которых определяется размерностью массива.

Для ввода индексных выражений обязательно нажать клавишу [ [ ] – левую квадратную скобку. При этом курсор перемещается вниз, и индексные выражения оказываются смещенными относительно имени массива.

Внимание! После завершение ввода индексных выражений обязательно охватить выделяющим уголком имя и индексные выражения массива.

Внимание! Смещение вниз вызывает также нажатие клавиши Последний элемент вектора маткад, но она используется только для ввода нижних индексов в имени переменной, но не индексных выражений.

На рисунке показан фрагмент присваивания значений отдельным элементам массивов: векторов Последний элемент вектора маткад и матриц Последний элемент вектора маткад. Здесь же приведен вывод этих массивов.

Начальное значение индексных выражений определяется системной переменной Последний элемент вектора маткад и по умолчанию ее значение равно 0.

Последний элемент вектора маткад

Для перехода к привычной нумерации (с начального значения 1) необходимо изменить значение системной переменной Последний элемент вектора маткад.

Это можно осуществить двумя способами:

а) задать в документе новое значение с помощью оператора присваивания (область действия нового значения – весь ниже лежащий документ);

б) обратиться к пункту меню Математика команда Опции и в появившемся диалоговом окне изменить значение опции Исходное множество на нужное значение (например, 1).

Верхний индекс матрицы

Верхний индекс – позволяет обратиться к отдельному столбцу массива.

Чтобы вставить верхний индекс, введите имя массива, а затем нажать клавиши

или нажать на кнопку Последний элемент вектора маткад:

Последний элемент вектора маткад Последний элемент вектора маткад

Последний элемент вектора маткад

Создание вектора и матрицы

Способ 1. Заполнение шаблона.

· введите имя матрицы и знак присваивания (двоеточие)

· щелкните по значку Последний элемент вектора маткадв панели “Матрицы”. В появившейся диалоговой панели введите число строк и столбцов матрицы.

Последний элемент вектора маткад

· После нажатия кнопки OK открывается поле для ввода элементов матрицы. Заполните метки — заполнители соответствующими значениями.

Примеры определения векторов и матриц:

Последний элемент вектора маткад

Последний элемент вектора маткад

Способ 2. Ввод с клавиатуры в цикле

Последний элемент вектора маткад

Способ 3. Формирование элементов по заданному выражению.

Сформировать вектор по правилу Последний элемент вектора маткад и матрицу D размером Последний элемент вектора маткад по правилу Последний элемент вектора маткад.

Последний элемент вектора маткад

Последний элемент вектора маткад

Изменение размера матрицы

Можно изменять размер матрицы, вставляя и удаляя строки и столбцы. Для этого необходимо выполнить следующее:

· Щёлкните на одном из элементов матрицы, чтобы заключить его в выделяющую рамку.

· Щелкните по значку “создать матрицу” в панели “Матрицы. Появляется диалоговое окно.

· Напечатайте число строк и (или) столбцов, которые нужно вставить или удалить. Затем нажмите на “Вставить” или на “Удалить”.

Например, чтобы удалить 1-й столбец, выделите элемент столбца (число 2), вызовите диалоговое окно “создать матрицу”, напечатайте 1 в поле “Столбцов”, 0 в поле “Строк”, и нажмите на “Удалить”.

Последний элемент вектора маткад Последний элемент вектора маткад

Рассмотрим различные ситуации удаления или вставки строк или столбцов:

· Если вставляются строки, Mathcad создает строки пустых полей ниже выбранного элемента. Если вставляются столбцы, Mathcad создает столбцы пустых полей справа от выбранного элемента.

· Чтобы вставить строку выше верхней строки или столбец слева от первого столбца, сначала заключите матрицу целиком в выделяющую рамку, щёлкнув внутри и нажав клавишу пробел несколько раз. Затем щелкните по значку “создать матрицу” и продолжите, как обычно.

· Когда удаляются строки или столбцы, Mathcad удаляет строки вниз от этого элемента, а столбцы — направо от этого элемента.

Внимание. При удалении строк или столбцов Mathcad удаляет содержащуюся в них информацию.

💥 Видео

Основные действия с матрицами и векторами в MathCAD 14 (20/34)Скачать

Основные действия с матрицами и векторами в MathCAD 14 (20/34)

Работа с массивами. Вектор столбцы и вектор строки 1. Урок 7Скачать

Работа с массивами. Вектор столбцы и вектор строки 1. Урок 7

Урок 4. МКЭ в Mathcad. Вектор узловой нагрузкиСкачать

Урок 4. МКЭ в Mathcad. Вектор узловой нагрузки

Урок 3. МКЭ в Mathcad. Векторы геометрических характеристикСкачать

Урок 3. МКЭ в Mathcad. Векторы геометрических характеристик

Функции для работы с матрицами и векторами в MathCAD 14 (21/34)Скачать

Функции для работы с матрицами и векторами в MathCAD 14 (21/34)

МАТКАД МатрицыСкачать

МАТКАД Матрицы

Векторы и матрицыСкачать

Векторы и матрицы

MATLAB 04 Массивы и матрицыСкачать

MATLAB 04 Массивы и матрицы

MathCAD Простейшие действия с матрицамиСкачать

MathCAD  Простейшие действия с матрицами

Matlab Tutorial - 27 - Extracting a Subset of Vector ElementsСкачать

Matlab Tutorial - 27 - Extracting a Subset of Vector Elements

Векторная диаграмма токов в программе MathcadСкачать

Векторная диаграмма токов в программе Mathcad

#11. Произведение матриц и векторов, элементы линейной алгебры | NumPy урокиСкачать

#11. Произведение матриц и векторов, элементы линейной алгебры | NumPy уроки

Матрицы в Mathcad(создание и редактирование матриц)(Урок 3.1)Скачать

Матрицы в Mathcad(создание и редактирование матриц)(Урок 3.1)

Find sum of vector elements in MATLABСкачать

Find sum of vector elements in MATLAB

Математика это не ИсламСкачать

Математика это не Ислам

Матрицы и векторы. Настройки Mathcad при работе с матрицами. Урок 12Скачать

Матрицы и векторы. Настройки Mathcad при работе с матрицами. Урок 12

Урок 7. МКЭ в Mathcad. Матрицы инциденций, жесткости и вектор перемещений ДМСкачать

Урок 7. МКЭ в Mathcad. Матрицы инциденций, жесткости и вектор перемещений ДМ
Поделиться или сохранить к себе: