Площадь треугольника через радиус вневписанной окружности доказательство

Площадь треугольника через радиус вневписанной окружности доказательство

  • Площадь треугольника через радиус вневписанной окружности доказательство

Площадь треугольника через радиус вневписанной окружности доказательство

Содержание
  1. §2. Площадь треугольника. Метод площадей
  2. Как найти площадь треугольника
  3. Основные понятия
  4. Формула площади треугольника
  5. Общая формула
  6. 1. Площадь треугольника через основание и высоту
  7. 2. Площадь треугольника через две стороны и угол между ними
  8. 3. Площадь треугольника через описанную окружность и стороны
  9. 4. Площадь треугольника через вписанную окружность и стороны
  10. 5. Площадь треугольника по стороне и двум прилежащим углам
  11. 6. Формула Герона для вычисления площади треугольника
  12. Для прямоугольного треугольника
  13. Площадь треугольника с углом 90° по двум сторонам
  14. Площадь треугольника по гипотенузе и острому углу
  15. Площадь прямоугольного треугольника по катету и прилежащему углу
  16. Площадь треугольника через гипотенузу и радиус вписанной окружности
  17. Площадь треугольника по отрезкам, на которые делит вписанная окружность его гипотенузу
  18. Площадь прямоугольного треугольника по формуле Герона
  19. Для равнобедренного треугольника
  20. Вычисление площади через основание и высоту
  21. Поиск площади через боковые стороны и угол между ними
  22. Площадь равностороннего треугольника через радиус описанной окружности
  23. Площадь равностороннего треугольника через радиус вписанной окружности
  24. Площадь равностороннего треугольника через сторону
  25. Площадь равностороннего треугольника через высоту
  26. Таблица формул нахождения площади треугольника
  27. Вневписанная окружность треугольника.
  28. 💥 Видео

§2. Площадь треугольника. Метод площадей

В школьном курсе геометрии доказано несколько формул площади треугольника. Напомним их.

Пусть `A`, `B` и `C` — углы треугольника`ABC`; `a`, `b` и `c` — противолежащие этим углам стороны; `h_a`, `h_b` и `h_c` — высоты к этим сторонам; `r` — радиус вписанной окружности;`R` — радиус описанной окружности; `2p=(a+b+c)` — периметр треугольника; `S` — площадь треугольника

`S=1/2ah_a=1/2bh_b=1/2ch_c`,(1)
`S=1/2 ab sinC=1/2acsinB=1/2bcsinA`,(2)
`S=pr`,(3)
``S=sqrt(p(p-a)(p-b)(p-c))` — формула Герона,(4)
`S=(abc)/(4R)`.(5)

При вычислении площади из этих формул следует выбрать ту, которая в условиях конкретной задачи приводит к более простому решению.

Для примера, рассмотрим два треугольника:

Площадь треугольника через радиус вневписанной окружности доказательство

Площадь треугольника через радиус вневписанной окружности доказательство

`DeltaABC:` `AB=13`, `BC=14`, `AC=15`;

`DeltaKML:` `KL=sqrt(13)`, `LM=sqrt(14)`, `KM=sqrt(15)`;

Надо найти площадь и радиус описанной окружности.

Для треугольника `ABC` удобен ход решения такой:

`p=1/2(AB+BC+AC)=21`, по формуле Герона

`S_(ABC)=sqrt(21*6*7*8)= ul(84)` и по формуле (5)

Для треугольника `KLM` вычисленная по формуле Герона затруднительны, более простой путь — найти косинус, например, угла `M`. По теореме косинусов

тогда `sinM=sqrt(1-64/(210))=(sqrt(146))/(sqrt(14)*sqrt(15))` и по формуле (2):

тогда `R=(KL)/(2sinM)=ul((sqrt(13)*sqrt(14)*sqrt(15))/(2*sqrt(146)))=(sqrt(13)*sqrt7*sqrt(15))/(2*sqrt(73))` (точно также по формуле 5).

Сравнение площадей треугольников обычно опирается на одно из следующих утверждений:

$$ 2.^$$. Площади треугольников с одинаковой высотой относятся как длины соответствующих оснований. В частности, если точка `D` лежит на основании `AC` (рис. 6а), то

Площадь треугольника через радиус вневписанной окружности доказательствоПлощадь треугольника через радиус вневписанной окружности доказательство

$$ 2.^$$. Площади треугольников с общим углом относятся как произведения сторон, заключающих этот угол (см. рис. 6б):

$$ 2.^$$. Площади подобных треугольников относятся как квадраты их

сходственных сторон, т. е. если `Delta ABC

DeltaA_1B_1C_1`, то `(S_(A_1B_1C_1))/(S_(ABC))=((A_1B_1)/(AB))^2`.

Все эти утверждения легко доказываются с использованием соответственно формул площади (1) и (2).

Обратим внимание на важное свойство медиан треугольника.

Три медианы треугольника разбивают его на `6` треугольников с общей вершиной и равными площадями.

Известно, что три медианы треугольника пересекаются в одной точке и делятся в отношении `2:1`, считая от вершины. Пусть `O` — точка пересечения медиан треугольника `DeltaABC` площади `S` (рис. 7а). Надо доказать, что площади всех шести треугольников с верш иной в точке `O`, составляющих треугольник `ABC`, равны между собой, т. е. равны `1/6S`.

Площадь треугольника через радиус вневписанной окружности доказательство

Докажем, например, для треугольника `BOM`, что `S_(BOM)=1/6S_(ABC)`.

Точка `M` — середина стороны `BC` (рис. 7б), по утверждению $$ 2.^$$ о сравнении площадей `S_(ABM)=1/2S`. Медиана `BN`, пересекая медиану `AM` в точке `O` (рис. 7в), делит её в отношении `AO:OM=2:1`, т. е. `OM=1/3AM`. По тому же утверждению $$ 2.^$$ площадь треугольника `BOM` составляет `1//3` площади треугольника `ABM`, т. е.

Дан треугольник `ABC`. Точка `D` лежит на стороне `AB`, `AD:DB=1:2`, точка `K` лежит на стороне `BC`, `BK:KC=3:2` (рис. 8а). Отрезки `AK` и `CD` пересекаются в точке `O`. Найти отношение площади четырёхугольника `DBKO` к площади треугольника `ABC`.

1. Обозначим `S_(ABC)=S`, `S_(DBKO)=sigma` и `S_(ADO)=a`. По утверждению $$ 2.^$$ имеем `S_(ABK)=a+sigma=3/5S` (так как `BK:BC=3:5`). Площадь `a` треугольника `ADO` найдём как часть площади треугольника `ADC`, зная, что `S_(ADC)=1/3S` (так как `AD:AB=1:3`).

Площадь треугольника через радиус вневписанной окружности доказательство

2. Через точку `D` проведём прямую `DL«||«AK`. По теореме о пересечении сторон угла параллельными прямыми (`/_ABC`, `DL«||«AK`) имеем `(BL)/(LK)=(BD)/(AD)`, откуда `LK=y`.

По той же теореме (`/_DCB`, `OK«||«DL`) получим `(DO)/(DC)=(LK)/(LC)`, `DO=1/3DC`.

3. Теперь находим `S_(ADO):S_(ADC)=DO:DC`, `a=1/3(1/3S)=1/9S`.

(Можно по теореме Менелая для треугольника `BCD` и секущей `CD:`

`(BK)/(KC)*(CO)/(OD)*(DA)/(AB)=1 iff 3/2*(CO)/(OD)*1/3=1 iff CO=2OD=>OD=1/3DC`).

Находим площадь: `sigma=3/5S-a=(3/5-1/9)S=22/45S`.

Найти площадь треугольника, две стороны которого равны `3` и `7`, а медиана к третьей стороне равна `4` (рис. 9).

Площадь треугольника через радиус вневписанной окружности доказательство

Пусть `AB=3`, `BC=7`, `AM=MC` и `BM=4`. Достроим треугольник `ABC` до параллелограмма, для этого на прямой `BM` отложим отрезок `MD=BM` и соединим точки: `A` с `D` и `C` с `D`. Противоположные стороны параллелограмма равны: `(DC=AB)` и равны площади треугольников `ABC` и `DBC` (общее основание `BC` и равные высоты из вершин `A` и `D`).

В треугольнике `DBC` известны все три стороны: `BC=7`, `DC=3`, `BD=2BM=8`.

Находим его площадь по формуле Герона: `p=9`, `S_(BCD)=6sqrt3`.

Значит и `S_(ABC)=6sqrt3`.

В решении этой задачи дополнительным построением получен треугольник, площадь которого равна площади заданного и легко вычисляется по данным задачи. Приведём ещё одну задачу, где сначала вычисляется площадь дополнительно построенной фигуры, а затем легко находится искомая площадь.

Найти площадь треугольника, если его медианы равны `3`, `4` и `5`.

Пусть `O` — точка пересечения медиан треугольника `ABC` (рис. 10) и пусть `m_a=AM=3`, `m_b=BN=4` и `m_c=CP=5`.

По свойству медиан `AO=2/3m_a`, `CO=2/3m_c` и `ON=1/3m_b`. В треугольнике `AOC` известны две стороны `AO` и `CO` и медиана третьей стороны `ON`. Площадь этого треугольника найдём как в предыдущей задаче.

Достроим треугольник `AOC` до параллелограмма `AOCD`, `S_(AOC)=S_(DOC)`, в треугольнике `DOC` известны три стороны:

`DO=2ON=2/3m_b`, `OC=2/3m_c`, `DC=AO=2/3m_a`.

Площадь треугольника `DOC` вычисляем по формуле Герона `S_1=S_(AOC)=S_(DOC)=8/3`. Сравним теперь площадь треугольника `ABC` (обозначим её `S`) с площадью треугольника `AOC`. Из теоремы 2 о медианах и площадях следует `S_(AOC)=S_(AON)+S_(NOC)=2*1/6S=1/3S`.

Площадь треугольника через радиус вневписанной окружности доказательство

В следующей задаче докажем лемму об отношении площади треугольника к площади другого треугольника, построенного из медиан первого.

Найти отношение площади `S` треугольника к площади `S_0` треугольника, составленного из медиан первого.

Рассмотрим рис. 10. В построенном треугольнике `OCD` стороны таковы: `OC=2/3m_c`, `OD=2/3m_b`, `CD=2/3m_a`. Очевидно, что треугольник со сторонами `m_a`, `m_b`, `m_c` подобен (по третьему признаку) треугольнику со сторонами `2/3m_a`, `2/3m_b`, `2/3m_c`.

Из решения предыдущей задачи следует, что `S_(OCD)=S_1=1/3S` (здесь `S` — площадь треугольника `ABC`). Кроме того, площади подобных треугольников относятся как квадраты сходственных сторон, поэтому `(S_1)/(S_0)=(2/3)^2`. Таким образом, имеем `S_0=9/4S_1=3/4S`, т. е.

`S_(m_am_bm_c)=3/4S_(abc)`.

Из рассуждений в решении Примера 9 следует, что всегда существует треугольник со сторонами, равными медианам данного треугольника, поскольку всегда существует подобный ему треугольник со сторонами `2/3m_a`, `2/3m_b`, `2/3m_c`. Кроме того, становится ясным план построения треугольника по трём отрезкам, равным его медианам: сначала строится треугольник `OCD` (см. рис. 10) со сторонами `2/3m_a`, `2/3m_b`, `2/3m_c`, затем точка `N` — середина отрезка `OD`, потом точка `A` (из `AN=NC`) и точка `B` (из `OB=OD`). Это построение осуществимо, если существует треугольник `OCD`, т. е. если существует треугольник со сторонами `m_a`, `m_b`, `m_c`. Итак, вывод: три отрезка могут быть медианами некоторого треугольника тогда и только тогда, когда из них можно составить треугольник.

Около окружности радиуса `sqrt3` описан треугольник. Найти его площадь, если одна из его сторон точкой касания делится на отрезки `9` и `5`.

Пусть `AP=9`, `PC=5` (рис. 11) и пусть `BM=x`. По свойству касательных `AM=AP`, `CN=CP` и `BN=BM`, поэтому стороны треугольника таковы: `AC=14`, `AB=9+x`, `BC=5+x`, тогда `p=14+x`. (Заметим, что `p=AC+BM`!). По формулам площади (3) и (4) имеем: `S=pr=(14+x)sqrt3` и `S=sqrt((14+x)x*5*9)`. Приравниваем правые части, возводим в квадрат, приводим подобные члены, получаем `x=1`. Вычисляем площадь треугольника:

Площадь треугольника через радиус вневписанной окружности доказательство

Приём, применённый в решении этой задачи, когда площадь фигуры выражается двумя различными способами, часто используется в задачах на доказательство.

Проведём два примера, в каждом выведем полезную формулу.

В треугольнике `ABC` угол `C` равен `varphi`, `AC=b`, `BC=a` (рис. 12). Доказать, что биссектриса `CD` равна `(2ab)/(a+b) cos varphi/2`.

Площадь треугольника через радиус вневписанной окружности доказательство

Обозначим `CD=x`. Очевидно, что `S_(ABC)=S_(ACD)+S_(DCB)`. По формуле (2) `S_(ABC)=1/2 ab sin varphi`, `S_(ACD)=1/2 bx sin varphi/2`, `S_(BDC)=1/2 ax sin varphi/2`. Таким образом, имеем: `1/2 ab sin varphi=1/2(a+b)x sin varphi/2`. Используем формулу синуса двойного угла `sin varphi=2sin varphi/2 cos varphi/2`, получим:

`x=(2ab)/(a+b)cos varphi/2`.

называется окружность, касающаяся одной из сторон треугольника и продолжений двух других сторон. Таких окружностей, очевидно, три (рис. 13). Их радиусы обычно обозначаются `r_a`, `r_b`, `r_c` в зависимости от того, какой стороны окружность касается.

Площадь треугольника через радиус вневписанной окружности доказательство

Вневписанная окружность касается стороны `a=BC` треугольника `ABC` (рис. 14). Доказать, что `S_(ABC)=r_a(p-a)`, где `2p=a+b+c`.

Площадь треугольника через радиус вневписанной окружности доказательство

Центр окружности `I_a` лежит на пересечении биссектрисы угла `A` и биссектрис внешних углов при вершинах `B` и `C`. Легко видеть, что если `D`, `F` и `E` — точки касания, то `I_aD=I_aF=I_aE=r_a`.

Считаем площадь `S_0` четырёхугольника `ABI_aC`:

`S_0=S_(ABC)+S_(BCI_a)` и `S_0=S_(ABI_a)+S_(ACI_a)`, откуда

Видео:Геометрия Доказательство Площадь треугольника равна произведению его полупериметра и радиусаСкачать

Геометрия Доказательство Площадь треугольника равна произведению его полупериметра и радиуса

Как найти площадь треугольника

Площадь треугольника через радиус вневписанной окружности доказательство

О чем эта статья:

8 класс, 9 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Радиус вневписанной окружности. Вывод формулы.Скачать

Радиус вневписанной окружности. Вывод формулы.

Основные понятия

Треугольник — это геометрическая фигура, которая получилась из трех отрезков. Их соединили тремя точками, не лежащими на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.

Площадь — это численная характеристика, которая дает нам информацию о размере части плоскости, ограниченной замкнутой геометрической фигурой.

Если значения заданы в разных единицах измерения длины, мы не сможем узнать, какая площадь треугольника получится. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.

Популярные единицы измерения площади:

  • квадратный миллиметр (мм 2 );
  • квадратный сантиметр (см 2 );
  • квадратный дециметр (дм 2 );
  • квадратный метр (м 2 );
  • квадратный километр (км 2 );
  • гектар (га).

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Формула площади треугольника

Для решения задач применяются различные формулы, в зависимости от известных исходных данных. Далее мы рассмотрим способы решения для всех типов треугольников, в том числе частные случаи для равносторонних, равнобедренных и прямоугольных фигур.

Быстро вычислить площадь треугольника поможет наш онлайн-калькулятор. Просто введите известные вам значения и получите ответ в метрах, сантиметрах или миллиметрах.

Научиться быстро щелкать задачки на нахождение площади треугольника помогут курсы по математике от Skysmart!

Видео:Вневписанная окружность | Теоремы об окружностях - 3Скачать

Вневписанная окружность | Теоремы об окружностях - 3

Общая формула

1. Площадь треугольника через основание и высоту

, где — основание, — высота.

2. Площадь треугольника через две стороны и угол между ними

, где , — стороны, — угол между ними.

3. Площадь треугольника через описанную окружность и стороны

, где , , — стороны, — радиус описанной окружности.

4. Площадь треугольника через вписанную окружность и стороны

, где , , — стороны, — радиус вписанной окружности.

Если учитывать, что — это способ поиска полупериметра, то формулу можно записать следующим образом:

5. Площадь треугольника по стороне и двум прилежащим углам

, где — сторона, и — прилежащие углы.

6. Формула Герона для вычисления площади треугольника

Сначала необходимо подсчитать разность полупериметра и каждой его стороны. Потом найти произведение полученных чисел, умножить результат на полупериметр и найти корень из полученного числа.

, где , , — стороны, — полупериметр, который можно найти по формуле:

Видео:Вневписанная окружностьСкачать

Вневписанная окружность

Для прямоугольного треугольника

Площадь треугольника с углом 90° по двум сторонам

Площадь треугольника по гипотенузе и острому углу

, где — гипотенуза, — любой из прилегающих острых углов.

Гипотенузой принято называть сторону, которая лежит напротив прямого угла.

Площадь прямоугольного треугольника по катету и прилежащему углу

, где — катет, — прилежащий угол.

Катетом принято называть одну из двух сторон, образующих прямой угол.

Площадь треугольника через гипотенузу и радиус вписанной окружности

, где — гипотенуза, — радиус вписанной окружности.

Площадь треугольника по отрезкам, на которые делит вписанная окружность его гипотенузу

, где , — части гипотенузы.

Площадь прямоугольного треугольника по формуле Герона

, где , — катеты, — полупериметр, который можно найти по формуле:

Видео:Пара фактов про окружность | Ботай со мной #067 | Борис Трушин |Скачать

Пара фактов про окружность | Ботай со мной #067 | Борис Трушин |

Для равнобедренного треугольника

Вычисление площади через основание и высоту

, где — основание, — высота, проведенная к основанию.

Поиск площади через боковые стороны и угол между ними

, где — боковая сторона, — угол между боковыми сторонами.

Площадь равностороннего треугольника через радиус описанной окружности

, где — радиус описанной окружности.

Площадь равностороннего треугольника через радиус вписанной окружности

, где — радиус вписанной окружности.

Площадь равностороннего треугольника через сторону

Площадь равностороннего треугольника через высоту

Видео:Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

Таблица формул нахождения площади треугольника

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу, использовать как закладку в тетрадке или учебнике и обращаться к ней по необходимости.

Видео:[12] Площадь через радиус вневписанной окружности. Теорема о трилистнике, трезубец, Теорема МансионаСкачать

[12] Площадь через радиус вневписанной окружности. Теорема о трилистнике, трезубец, Теорема Мансиона

Вневписанная окружность треугольника.

Площадь треугольника через радиус вневписанной окружности доказательство

Определение.

Окружность, касающаяся стороны треугольника и продолжения двух других его сторон, называется вневписанной окружностью треугольника.

Теорема 1.

Центр окружности, вневписанной в треугольник, есть точка пересечения биссектрис двух внешних и одного внутреннего угла треугольника.

Площадь треугольника через радиус вневписанной окружности доказательство

Доказательство.

BF — биссектриса ∠JBG, следовательно F равноудалена от сторон данного угла.

СF — биссектриса ∠JСH, следовательно F равноудалена от сторон данного угла.

Следовательно, точка F равноудалена от сторон ∠BAC.

Таким образом, точка F — центр окружности, касающейся стороны BC и продолжения сторон AB и AC. По определению данная окружность называется вневписанной окружностью треугольника.

Теорема 2.

Отрезок, соединяющий вершину треугольника с точкой касания вневписанной окружности и противолежащей стороны, делит треугольник на два треугольника равного периметра.

Площадь треугольника через радиус вневписанной окружности доказательство

Доказательство.

BJ=BG, GC=CH и AJ=AH (свойство отрезков касательных, проведенных из одной точки к окружности).

PΔABC=AB+ BC +AC=AB+ BG + GC +AC=AB+ BJ + AC +CH=AJ+AH.

Так как AJ=AH, то PΔABC/2=AJ=AH и PΔABC/2+AG=AJ+AG=AH+AG=AB+BG+GA=AC+CG+GA.

Следовательно, отрезок AG поделил треугольник ABC на два треугольника равного периметра PΔABC/2+AG.

💥 Видео

Вневписанная окружность. Теория | Профильная математика в онлайн - школе СОТКАСкачать

Вневписанная окружность. Теория | Профильная математика в онлайн - школе СОТКА

✓ Как вневписанная окружность Герону помогла | Ботай со мной #083 | Борис ТрушинСкачать

✓ Как вневписанная окружность Герону помогла | Ботай со мной #083 | Борис Трушин

Лекция 59. Вневписанная окружность.Скачать

Лекция 59. Вневписанная окружность.

Площадь сектора и сегмента. 9 класс.Скачать

Площадь сектора и сегмента. 9 класс.

Формула радиуса вписанной окружности треугольника. Геометрия 9 классСкачать

Формула радиуса вписанной окружности треугольника. Геометрия 9 класс

Вся геометрия треугольника в одной задаче. Планиметрия. ЕГЭ 2023 математика задача 16Скачать

Вся геометрия треугольника в одной задаче. Планиметрия. ЕГЭ 2023 математика задача 16

Сможешь найти радиус вневписанной окружности?Скачать

Сможешь найти радиус вневписанной окружности?

Как найти радиус - вневписанная окружность | Олимпиадная математикаСкачать

Как найти радиус - вневписанная окружность | Олимпиадная математика

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Площадь треугольника через радиус описанной окружности: ОГЭ - ЕГЭСкачать

Площадь треугольника через радиус описанной окружности: ОГЭ - ЕГЭ

Найти радиус за 1 минуту!Скачать

Найти радиус за 1 минуту!

Вневписанная окружностьСкачать

Вневписанная окружность
Поделиться или сохранить к себе: