Площадь четырехугольника через радиус вписанной окружности

Как рассчитать площадь четырехугольника

На данной странице калькулятор поможет рассчитать площадь четырехугольника онлайн. Для расчета задайте длину сторон, длины диагоналей и угол между ними, противолежащие углы, радиус окружности.

Четырёхугольник — многоугольник, состоящий из четырех точек (вершин) и четырёх отрезков (сторон), попарно соединяющих эти точки.

Содержание
  1. Через диагонали и угол между ними
  2. Через стороны и противолежащие углы
  3. Площадь вписанного четырехугольника в окружность
  4. Площадь описанного четырехугольника около окружности через радиус
  5. Площадь четырехугольника
  6. Площадь четырехугольника по диагоналям и углу между ними
  7. Площадь четырехугольника через стороны и углы между этими сторонами
  8. Площадь четырехугольника вписанного в окружность, вычисляемая по Формуле Брахмагупты
  9. Площадь четырехугольника в который можно вписать окружность
  10. Площадь четырехугольника в который можно вписать окружность, определяемая через стороны и углы между ними
  11. Таблица с формулами площади четырехугольника
  12. Площадь частных случаев четырехугольников
  13. Определения
  14. Площади четырехугольников
  15. Формулы для площадей четырехугольников
  16. Вывод формул для площадей четырехугольников
  17. 🎥 Видео

Через диагонали и угол между ними

Площадь четырехугольника через радиус вписанной окружности

Формула для нахождения площади четырехугольников через диагонали и угол между ними:

Через стороны и противолежащие углы

Площадь четырехугольника через радиус вписанной окружности

Формула для нахождения площади четырехугольников через стороны и противолежащие углы:

Площадь вписанного четырехугольника в окружность

Площадь четырехугольника через радиус вписанной окружности

Формула Брахмагупты для нахождения площади вписанного четырехугольника в окружность:

Площадь описанного четырехугольника около окружности через радиус

Площадь четырехугольника через радиус вписанной окружности

Формула для нахождения площади описанного четырехугольника около окружности через радиус:

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Площадь четырехугольника

Площадь произвольного четырехугольника, формулы и калькулятор для вычисления в режиме онлайн. Для вычисления площади произвольного четырехугольника применяются различные формулы, в зависимости от известных исходных данных. Ниже приведены формулы и калькулятор, который поможет вычислить площадь произвольного четырехугольника или проверить уже выполненные вычисления.

В окончании статьи приведены ссылки для вычисления частных случаев четырехугольников: квадрата, трапеции, параллелограмма, прямоугольника, ромба.

Видео:№698. Сумма двух противоположных сторон описанного четырехугольника равна 12 см, а радиусСкачать

№698. Сумма двух противоположных сторон описанного четырехугольника равна 12 см, а радиус

Площадь четырехугольника по диагоналям и углу между ними

Площадь четырехугольника через радиус вписанной окружности

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Площадь четырехугольника через стороны и углы между этими сторонами

Площадь четырехугольника через радиус вписанной окружности

При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:

Видео:№699. Сумма двух противоположных сторон описанного четырехугольника равна 10 см, а его площадьСкачать

№699. Сумма двух противоположных сторон описанного четырехугольника равна 10 см, а его площадь

Площадь четырехугольника вписанного в окружность, вычисляемая по Формуле Брахмагупты

Площадь четырехугольника через радиус вписанной окружности

Данная формула справедлива только для четырехугольников, вокруг которых можно описать окружность.

При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Площадь четырехугольника в который можно вписать окружность

Площадь четырехугольника через радиус вписанной окружности

Данная формула справедлива только для четырехугольников, в которые можно вписать окружность. Вписанная окружность должна иметь точки соприкосновения со всеми четырьмя сторонами четырехугольника.

При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:

Видео:Площадь многоугольника через радиус вписанной окружностиСкачать

Площадь многоугольника через радиус вписанной окружности

Площадь четырехугольника в который можно вписать окружность, определяемая через стороны и углы между ними

Площадь четырехугольника через радиус вписанной окружности

Данная формула справедлива только для четырехугольников, в которые можно вписать окружность. Вписанная окружность должна иметь точки соприкосновения со всеми четырьмя сторонами четырехугольника.

Если в исходных данных угол задан в радианах, то для перевода в градусы вы можете воспользоваться «Конвертером величин». Или вычислить самостоятельно по формуле: 1 рад × (180/π) ° = 57,296°

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Таблица с формулами площади четырехугольника

исходные данные
(активная ссылка для перехода к калькулятору)
эскизформула
1диагональ и угол между нимиПлощадь четырехугольника через радиус вписанной окружности
2стороны и углы между этими сторонамиПлощадь четырехугольника через радиус вписанной окружности
3стороны
(по Формуле Брахмагупты)
Площадь четырехугольника через радиус вписанной окружности
4стороны и радиус вписанной окружностиПлощадь четырехугольника через радиус вписанной окружности
5стороны и углы между нимиПлощадь четырехугольника через радиус вписанной окружности

Видео:Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать

Задача 6 №27934 ЕГЭ по математике. Урок 148

Площадь частных случаев четырехугольников

Для вычисления частных случаев четырехугольников можно воспользоваться формулами и калькуляторами, приведенными в других статьях сайта:

Определения

Четырехугольник – это геометрическая плоская фигура, образованная четырьмя последовательно соединенными отрезками.

Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.

Площадь четырехугольника — это численная характеристика, характеризующая размер плоскости, ограниченной геометрической фигурой, образованной четырьмя последовательно соединенными отрезками.

Площадь измеряется в единицах измерения в квадрате: км 2 , м 2 , см 2 , мм 2 и т.д.

Видео:Формулы для вычисления площади правильного многоугольника,его стороны и радиуса вписанной окружностиСкачать

Формулы для вычисления площади правильного многоугольника,его стороны и радиуса вписанной окружности

Площади четырехугольников

Площадь четырехугольника через радиус вписанной окружностиФормулы для площадей четырехугольников
Площадь четырехугольника через радиус вписанной окружностиВывод формул для площадей четырехугольников
Площадь четырехугольника через радиус вписанной окружностиВывод формулы Брахмагупты для площади вписанного четырехугольника

В данном разделе рассматриваются только выпуклые фигуры, и считается известной формула:

которая позволяет найти площадь прямоугольника прямоугольника с основанием a и высотой b.

Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

Формулы для площадей четырехугольников

a и b – смежные стороны

Площадь четырехугольника через радиус вписанной окружности

d – диагональ,
φ – любой из четырёх углов между диагоналями

Получается из верхней формулы подстановкой d=2R

R – радиус описанной окружности,
φ – любой из четырёх углов между диагоналями

a – сторона,
ha – высота, опущенная на эту сторону

a и b – смежные стороны,
φ – угол между ними

Площадь четырехугольника через радиус вписанной окружности

φ – любой из четырёх углов между ними

a – сторона квадрата

Площадь четырехугольника через радиус вписанной окружности

Получается из верхней формулы подстановкой d = 2R

a – сторона,
ha – высота, опущенная на эту сторону

a – сторона,
φ – любой из четырёх углов ромба

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

r – радиус вписанной окружности,
φ – любой из четырёх углов ромба

Площадь четырехугольника через радиус вписанной окружности

a и b – основания,
h – высота

Площадь четырехугольника через радиус вписанной окружности

φ – любой из четырёх углов между ними

Площадь четырехугольника через радиус вписанной окружности

a и b – основания,
c и d – боковые стороны

a и b – неравные стороны,
φ – угол между ними

a и b – неравные стороны,
φ1 – угол между сторонами, равными a ,
φ2 – угол между сторонами, равными b .

a и b – неравные стороны,
r – радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

φ – любой из четырёх углов между ними

Площадь четырехугольника через радиус вписанной окружности,
Площадь четырехугольника через радиус вписанной окружности

a, b, c, d – длины сторон четырёхугольника,
p – полупериметр,

Формулу называют «Формула Брахмагупты»

ЧетырехугольникРисунокФормула площадиОбозначения
ПрямоугольникПлощадь четырехугольника через радиус вписанной окружностиS = ab
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
ПараллелограммПлощадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
КвадратПлощадь четырехугольника через радиус вписанной окружностиS = a 2
Площадь четырехугольника через радиус вписанной окружностиS = 4r 2
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
РомбПлощадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
ТрапецияПлощадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружностиS = m h
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
ДельтоидПлощадь четырехугольника через радиус вписанной окружностиS = ab sin φ
Площадь четырехугольника через радиус вписанной окружностиПлощадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Произвольный выпуклый четырёхугольникПлощадь четырехугольника через радиус вписанной окружности
Вписанный четырёхугольникПлощадь четырехугольника через радиус вписанной окружности

где
a и b – смежные стороны

Площадь четырехугольника через радиус вписанной окружности

где
d – диагональ,
φ – любой из четырёх углов между диагоналями

где
R – радиус описанной окружности,
φ – любой из четырёх углов между диагоналями

Формула получается из верхней формулы подстановкой d = 2R

где
a – сторона,
ha – высота, опущенная на эту сторону

где
a и b – смежные стороны,
φ – угол между ними

Площадь четырехугольника через радиус вписанной окружности

φ – любой из четырёх углов между ними

Площадь четырехугольника через радиус вписанной окружности

Получается из верхней формулы подстановкой d = 2R

где
a – сторона,
ha – высота, опущенная на эту сторону

где
a – сторона,
φ – любой из четырёх углов ромба

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

где
r – радиус вписанной окружности,
φ – любой из четырёх углов ромба

Площадь четырехугольника через радиус вписанной окружности

где
a и b – основания,
h – высота

Площадь четырехугольника через радиус вписанной окружности

φ – любой из четырёх углов между ними

Площадь четырехугольника через радиус вписанной окружности

где
a и b – основания,
c и d – боковые стороны

где
a и b – неравные стороны,
φ – угол между ними

где
a и b – неравные стороны,
r – радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

φ – любой из четырёх углов между ними

Площадь четырехугольника через радиус вписанной окружности,
Площадь четырехугольника через радиус вписанной окружности

где
a, b, c, d – длины сторон четырёхугольника,
p – полупериметр

Формулу называют «Формула Брахмагупты»

Прямоугольник
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Параллелограмм
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Квадрат
Площадь четырехугольника через радиус вписанной окружностиS = a 2

где
a – сторона квадрата

Площадь четырехугольника через радиус вписанной окружностиS = 4r 2

Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Ромб
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Трапеция
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Дельтоид
Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружностиПлощадь четырехугольника через радиус вписанной окружности

где
a и b – неравные стороны,
φ1 – угол между сторонами, равными a ,
φ2 – угол между сторонами, равными b .

Площадь четырехугольника через радиус вписанной окружности
Площадь четырехугольника через радиус вписанной окружности
Произвольный выпуклый четырёхугольник
Площадь четырехугольника через радиус вписанной окружности
Вписанный четырёхугольник
Площадь четырехугольника через радиус вписанной окружности
Прямоугольник
Площадь четырехугольника через радиус вписанной окружности

где
a и b – смежные стороны

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

где
d – диагональ,
φ – любой из четырёх углов между диагоналями

Площадь четырехугольника через радиус вписанной окружности

где
R – радиус описанной окружности,
φ – любой из четырёх углов между диагоналями

Формула получается из верхней формулы подстановкой d = 2R

ПараллелограммПлощадь четырехугольника через радиус вписанной окружности

где
a – сторона,
ha – высота, опущенная на эту сторону

Площадь четырехугольника через радиус вписанной окружности

где
a и b – смежные стороны,
φ – угол между ними

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

φ – любой из четырёх углов между ними

КвадратПлощадь четырехугольника через радиус вписанной окружности

где
a – сторона квадрата

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Получается из верхней формулы подстановкой d = 2R

РомбПлощадь четырехугольника через радиус вписанной окружности

где
a – сторона,
ha – высота, опущенная на эту сторону

Площадь четырехугольника через радиус вписанной окружности

где
a – сторона,
φ – любой из четырёх углов ромба

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

где
r – радиус вписанной окружности,
φ – любой из четырёх углов ромба

ТрапецияПлощадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

где
a и b – основания,
h – высота

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

φ – любой из четырёх углов между ними

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

где
a и b – основания,
c и d – боковые стороны ,
Площадь четырехугольника через радиус вписанной окружности

ДельтоидПлощадь четырехугольника через радиус вписанной окружности

где
a и b – неравные стороны,
φ – угол между ними

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

где
a и b – неравные стороны,
φ1 – угол между сторонами, равными a ,
φ2 – угол между сторонами, равными b .

Площадь четырехугольника через радиус вписанной окружности

где
a и b – неравные стороны,
r – радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Произвольный выпуклый четырёхугольникПлощадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

φ – любой из четырёх углов между ними

Вписанный четырёхугольникПлощадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

где
a, b, c, d – длины сторон четырёхугольника,
p – полупериметр

Формулу называют «Формула Брахмагупты»

Видео:112. Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписаннойСкачать

112. Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной

Вывод формул для площадей четырехугольников

Утверждение 1 . Площадь выпуклого четырёхугольника можно найти по формуле

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Доказательство . В соответствии с рисунком 1 справедливо равенство:

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

что и требовалось доказать.

Утверждение 2 . Площадь параллелограмма параллелограмма можно найти по формуле

где a – сторона параллелограмма, а ha – высота высота высота , опущенная на эту сторону (рис. 2).

Площадь четырехугольника через радиус вписанной окружности

Доказательство . Поскольку прямоугольный треугольник DFC равен прямоугольному треугольнику AEB (рис.26), то четырёхугольник AEFB – прямоугольник. Поэтому

что и требовалось доказать.

Утверждение 3 .Площадь параллелограмма параллелограмма можно найти по формуле

где a и b – смежные стороны параллелограмма, а φ – угол между ними (рис. 3).

Площадь четырехугольника через радиус вписанной окружности

то, в силу утверждения 2, справедлива формула

что и требовалось доказать.

Утверждение 4 . Площадь ромба ромба можно найти по формуле

Площадь четырехугольника через радиус вписанной окружности,

где r – радиус вписанной в ромб окружности, а φ – любой из четырёх углов ромба (рис.4).

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

что и требовалось доказать.

Утверждение 5 . Площадь трапеции можно найти по формуле

Площадь четырехугольника через радиус вписанной окружности,

где a и b – основания трапеции, а h – высота высота высота (рис.5).

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Доказательство . Проведём прямую BE через вершину B трапеции и середину E боковой стороны CD . Точку пересечения прямых AD и BE обозначим буквой F (рис. 5). Поскольку треугольник BCE равен треугольнику EDF (по стороне и прилежащим к ней углам), то площадь трапеции ABCD равна площади треугольника ABF . Поэтому

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

что и требовалось доказать.

Утверждение 6 . Площадь трапеции трапеции можно найти по формуле

Площадь четырехугольника через радиус вписанной окружности

где a и b – основания, а c и d – боковые стороны трапеции ,
Площадь четырехугольника через радиус вписанной окружности
(рис.6).

Площадь четырехугольника через радиус вписанной окружности

Доказательство . Воспользовавшись теоремой Пифагора, составим следующую систему уравнений с неизвестными x, y, h (рис. 6):

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности

Площадь четырехугольника через радиус вписанной окружности,

что и требовалось доказать.

Утверждение 7 . Площадь дельтоида, дельтоида, можно найти по формуле:

где a и b – неравные стороны дельтоида, а r – радиус вписанной в дельтоид окружности (рис.7).

Площадь четырехугольника через радиус вписанной окружности

Доказательство . Докажем сначала, что в каждый дельтоид можно вписать окружность. Для этого заметим, что треугольники ABD и BCD равны в силу признака равенства треугольников «По трём сторонам» (рис. 7). Отсюда вытекает, что диагональ BD является биссектрисой углов B и D , а биссектрисы углов A и C пересекаются в некоторой точке O , лежащей на диагонали BD . Точка O и является центром вписанной в дельтоид окружности.

Если r – радиус вписанной в дельтоид окружности, то

🎥 Видео

Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольникСкачать

Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольник

Задание 24 Площадь описанного треугольникаСкачать

Задание 24 Площадь описанного треугольника

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

Задача 6 №27932 ЕГЭ по математике. Урок 146Скачать

Задача 6 №27932 ЕГЭ по математике. Урок 146

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математике

Задание 26 Площадь четырехугольникаСкачать

Задание 26 Площадь четырехугольника

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.
Поделиться или сохранить к себе: