В равносторонний треугольник вписана окружность радиусом 1 найдите площадь

В равносторонний треугольник вписана окружность радиусом 1 найдите площадь

Периметр треугольника равен 12, а радиус вписанной окружности равен 1. Найдите площадь этого треугольника.

Площадь треугольника равна произведению его полупериметра (p) на радиус вписанной окружности (r):

В равносторонний треугольник вписана окружность радиусом 1 найдите площадь

Площадь треугольника равна произведению ПЕРИМЕТРА на радиус!

Площадь треугольника равна произведению ПОЛУПЕРИМЕТРА на радиус вписанной окружности

Площадь треугольника равна 24, а радиус вписанной окружности равен 2. Найдите периметр этого треугольника.

Из формулы В равносторонний треугольник вписана окружность радиусом 1 найдите площадьгде p — полупериметр, находим, что периметр описанного многоугольника равен отношению удвоенной площади к радиусу вписанной окружности:

Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

Площадь круга, вписанного в равносторонний треугольник: решение

Содержание:

В геометрии встречаются понятия описанной и вписанной геометрических фигур. Описанным будет треугольник, через вершины которого проходит окружность, вписанным – если его стороны соприкасаются с кругом. Такое построение в обоих случаях обладает рядом особенностей, которые применяются на практике и упрощают решение задач. Рассмотрим свойства и формулы для расчёта описанного 3-угольника.

Видео:Окружность вписана в равносторонний треугольник, найти радиусСкачать

Окружность вписана в равносторонний треугольник, найти радиус

Особенности явления

В равносторонний треугольник вписана окружность радиусом 1 найдите площадь

Окружность с центром O, проходящая через одну из точек: D, E либо F обязательно будет лежать и на двух остальных. Прямые, разделяющие углы пополам, или биссектрисы равностороннего треугольника пересекаются в общей точке – центре вписанной окружности, который находится на одинаковом удалении от сторон геометрической фигуры.

В равносторонний треугольник вписана окружность радиусом 1 найдите площадь

Из вышесказанного следуют свойства:

  • В треугольник вписывается лишь один круг.
  • Его центр находится на одинаковом расстоянии от ближайших точек на сторонах 3-угольника.
  • Перпендикуляры, опущенные из центра O, и биссектрисы пересекаются в одной точке, называемой центром вписанной окружности.

Видео:15 задание треугольники огэ по математике / маттаймСкачать

15 задание треугольники огэ по математике / маттайм

Способ вычислить площадь круга, вписанного в треугольник

Для вычисления площади, если дан только размер стороны правильного треугольника, применяется ряд формул.
S=πr 2 .

В равносторонний треугольник вписана окружность радиусом 1 найдите площадьa, где:

  • a – длина стороны геометрической фигуры;
  • r – радиус круга, расположенного внутри многоугольника с тремя равными сторонами.

После подстановки значения получается выражение для вычисления площади вписанной окружности:

В равносторонний треугольник вписана окружность радиусом 1 найдите площадь.

В задачах могут давать длину сторон, тогда В равносторонний треугольник вписана окружность радиусом 1 найдите площадь
Выражение В равносторонний треугольник вписана окружность радиусом 1 найдите площадьдля равностороннего треугольника можно записать в виде В равносторонний треугольник вписана окружность радиусом 1 найдите площадьтак как 3-угольник равносторонний. С иной стороны В равносторонний треугольник вписана окружность радиусом 1 найдите площадь– это полупериметр рассматриваемой геометрической фигуры – p.

Зная это, формула записывается в виде: S = r * p.

Видео:№693. В прямоугольный треугольник вписана окружность радиуса r. Найдите периметр треугольника,Скачать

№693. В прямоугольный треугольник вписана окружность радиуса r. Найдите периметр треугольника,

Задачи

В равносторонний треугольник вписана окружность радиусом 1 найдите площадь

В формулу подставим длину сторон треугольника, после вычислений получим результат.

В равносторонний треугольник вписана окружность радиусом 1 найдите площадь

Вычислить занимаемое вписанным в 3-угольник кругом пространство, если его сторона равна 10 см.

В равносторонний треугольник вписана окружность радиусом 1 найдите площадьДля вычислений необходимо найти радиус r.

Известно, что он определяется по формуле:

В равносторонний треугольник вписана окружность радиусом 1 найдите площадь

После преобразований выражение упрощается до В равносторонний треугольник вписана окружность радиусом 1 найдите площадь.

В равносторонний треугольник вписана окружность радиусом 1 найдите площадь– полупериметр.

Начинаем проводить вычисления.

P = a + a + a = 10 +10 +10 или 10 * 3 = 30 см.

Видео:Задача 6 №27624 ЕГЭ по математике. Урок 71Скачать

Задача 6 №27624 ЕГЭ по математике. Урок 71

Треугольник вписанный в окружность

В равносторонний треугольник вписана окружность радиусом 1 найдите площадь

Видео:Задание 16 ОГЭ по математике. Окружность вписана в равносторонний треугольник.Скачать

Задание 16 ОГЭ по математике. Окружность вписана в  равносторонний  треугольник.

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

В равносторонний треугольник вписана окружность радиусом 1 найдите площадь

Видео:Равносторонний треугольник в окружностиСкачать

Равносторонний треугольник в окружности

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = fracab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Видео:Задача 6 №27910 ЕГЭ по математике. Урок 130Скачать

Задача 6 №27910 ЕГЭ по математике. Урок 130

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Видео:№1117. Найдите площадь круга, вписанного: а) в равносторонний треугольник со стороной а;Скачать

№1117. Найдите площадь круга, вписанного: а) в равносторонний треугольник со стороной а;

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

В равносторонний треугольник вписана окружность радиусом 1 найдите площадь

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

🔍 Видео

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математикаСкачать

Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математика

Геометрия. ОГЭ по математике. Задание 16Скачать

Геометрия. ОГЭ по математике. Задание 16

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ

Вписанная окружность в равностороннем треугольникеСкачать

Вписанная окружность  в равностороннем треугольнике

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Геометрия В правильный треугольник вписана окружность и около него описана окружность Найти площадьСкачать

Геометрия В правильный треугольник вписана окружность и около него описана окружность Найти площадь

Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать

Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математике
Поделиться или сохранить к себе: