Пирамида из равносторонних треугольников

Пирамида из равносторонних треугольников

Пирамида из равносторонних треугольников

Учебный курсРешаем задачи по геометрии

В этом уроке приведены определение и свойства правильной треугольной пирамиды и ее частного случая — тетраэдра (см. ниже). Ссылки на примеры решения задач приведены в конце урока.

Видео:оригами пирамида как сделать пирамиду из бумаги схема пирамида хеопса How to make Paper PyramidСкачать

оригами пирамида как сделать пирамиду из бумаги схема пирамида хеопса How to make Paper Pyramid

Определение

Правильная треугольная пирамида — это пирамида, основанием которой является правильный треугольник, а вершина проецируется в центр основания.

Пирамида из равносторонних треугольников

На рисунке обозначены:
ABC — Основание пирамиды
OS — Высота
KS — Апофема
OK — радиус окружности, вписанной в основание
AO — радиус окружности, описанной вокруг основания правильной треугольной пирамиды
SKO — двугранный угол между основанием и гранью пирамиды (в правильной пирамиде они равны)

Важно. В правильной треугольной пирамиде длина ребра (на рисунке AS, BS, CS ) может быть не равна длине стороны основания (на рисунке AB, AC, BC). Если длина ребра правильной треугольной пирамиды равна длине стороны основания, то такая пирамида называется тетраэдром (см. ниже).

Видео:Построение проекции пирамиды. Метод прямого треугольника.Скачать

Построение проекции пирамиды. Метод прямого треугольника.

Свойства правильной треугольной пирамиды:

  • боковые ребра правильной пирамиды равны
  • все боковые грани правильной пирамиды являются равнобедренными треугольниками
  • в правильную треугольную пирамиду можно как вписать, так и описать вокруг неё сферу
  • если центры вписанной и описанной вокруг правильной треугольной пирамиды, сферы совпадают, то сумма плоских углов при вершине пирамиды равна π (180 градусов) , а каждый из них соответственно равен π / 3 (пи делить на 3 или 60 градусов ).
  • площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
  • вершина пирамиды проецируется на основание в центр правильного равностороннего треугольника,, который является центром вписанной окружности и точкой пересечения медиан

Формулы для правильной треугольной пирамиды

Формула объема правильной треугольной пирамиды:

Пирамида из равносторонних треугольников

V — объем правильной пирамиды, имеющей в основании правильный (равносторонний) треугольник
h — высота пирамиды
a — длина стороны основания пирамиды
R — радиус описанной окружности
r — радиус вписанной окружности

Поскольку правильная треугольная пирамида является частным случаем правильной пирамиды, то формулы, которые верны для правильной пирамиды, верны и для правильной треугольной — см. формулы для правильной пирамиды.

Примеры решения задач:

Видео:Развертка тетраэдра - это легко! Как сделать объёмную правильную треугольную пирамиду из бумаги?Скачать

Развертка тетраэдра - это легко! Как сделать объёмную правильную треугольную пирамиду из бумаги?

Тетраэдр

Частным случаем правильной треугольной пирамиды является тетраэдр.

Тетраэдр — это правильный многогранник (правильная треугольная пирамида) у которой все грани являются правильными треугольниками.

  • Все грани равны
  • 4 грани, 4 вершины и 6 ребер
  • Все двугранные углы при рёбрах и все трёхгранные углы при вершинах равны

Медиана тетраэдра — это отрезок, соединяющий вершину с точкой пересечения медиан противоположной грани (медиан равностороннего треугольника, противолежащего вершине)

Бимедиана тетраэдра — это отрезок, соединяющий середины скрещивающихся рёбер (соединяющий середины сторон треугольника, являющегося одной из граней тетраэдра)

Высота тетраэдра — это отрезок, соединяющий вершину с точкой противоположной грани и перпендикулярный этой грани (то есть является высотой, проведенной от любой грани, также совпадает с центром описанной окружности).

Тетраэдр обладает следующими свойствами:

  • Все медианы и бимедианы тетраэдра пересекаются в одной точке
  • Эта точка делит медианы в отношении 3:1, считая от вершины
  • Эта точка делит бимедианы пополам

Видео:Треугольная пирамида. Ортогональные и изометрическая проекции.Урок22.(Часть2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)Скачать

Треугольная пирамида. Ортогональные и изометрическая проекции.Урок22.(Часть2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)

Пирамида. Правильная пирамида

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Пирамида из равносторонних треугольников

Данный видеоурок поможет пользователям получить представление о теме Пирамида. Правильная пирамида. На этом занятии мы познакомимся с понятием пирамиды, дадим ей определение. Рассмотрим, что такое правильная пирамида и какими свойствами она обладает. Затем докажем теорему о боковой поверхности правильной пирамиды.

Видео:Развертка пирамидыСкачать

Развертка пирамиды

Пирамида

Пирамида – многогранник, основание которого — многоугольник , а остальные грани — треугольники, имеющие общую вершину.

Пирамида из равносторонних треугольников

По числу углов основания различают пирамиды треугольные , четырёхугольные и т. д.

Вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания.

Основание — многоугольник, которому не принадлежит вершина пирамиды.

Апофема — высота боковой грани правильной пирамиды, проведенная из ее вершины.

Пирамида из равносторонних треугольников

Высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра).

Пирамида из равносторонних треугольников

Диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания.

Пирамида из равносторонних треугольников

Видео:Усеченная пирамида. 11 класс.Скачать

Усеченная пирамида. 11 класс.

Некоторые свойства пирамиды

1) Если все боковые ребра равны, то

около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр

Пирамида из равносторонних треугольников

боковые ребра образуют с плоскостью основания равные углы

Пирамида из равносторонних треугольников

Верно и обратное.

Если боковые ребра образуют с плоскостью основания равные углы, то все боковые ребра пирамиды равны.

Если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.

2) Если все грани пирамиды наклонены к плоскости основания под одним углом , то в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр

Пирамида из равносторонних треугольников

Верно и обратное.

Видео:Основание пирамиды SABC-равносторонний треугольник АВС. Боковое ребро SA перпендикулярноСкачать

Основание пирамиды SABC-равносторонний треугольник АВС. Боковое ребро SA перпендикулярно

Виды пирамид

Пирамида называется правильной , если основанием её является правильный многоугольник, а вершина проецируется в центр основания.

Пирамида из равносторонних треугольников

Для правильной пирамиды справедливо:

– боковые ребра правильной пирамиды равны;

– в правильной пирамиде все боковые грани — равные равнобедренные треугольники;

– в любую правильную пирамиду можно вписать сферу;

– около любой правильной пирамиды можно описать сферу;

– площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Видео:Делаем модель пирамиды для решения задачи по стереометрииСкачать

Делаем модель пирамиды для решения задачи по стереометрии

Пирамида из равносторонних треугольников

Пирамида называется прямоугольной , если одно из боковых рёбер пирамиды перпендикулярно основанию. Тогда это ребро и есть высота пирамиды.

Пирамида из равносторонних треугольников

Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию.

Пирамида из равносторонних треугольников

Тетраэдр – треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды.

🎦 Видео

Пирамида из бумаги/Paper pyramid/DIYСкачать

Пирамида из бумаги/Paper pyramid/DIY

Что пытаются скрыть историки. Неопровержимые доказательства ядерной войны в 19 веке.Скачать

Что пытаются скрыть историки. Неопровержимые доказательства ядерной войны в 19 веке.

Как из бумажного квадрата сделать равносторонний треугольник?Скачать

Как из бумажного квадрата сделать равносторонний треугольник?

ВСЕ О ПИРАМИДАХ! ЧАСТЬ I #shorts #егэ #огэ #математика #геометрия #пирамидаСкачать

ВСЕ О ПИРАМИДАХ! ЧАСТЬ I #shorts #егэ #огэ #математика #геометрия #пирамида

УРОК 3.КАК НАРИСОВАТЬ ПРИЗМУ,ПИРАМИДУ.Обучение рисунку.Урок рисования карандашом.построение поэтапноСкачать

УРОК 3.КАК НАРИСОВАТЬ ПРИЗМУ,ПИРАМИДУ.Обучение рисунку.Урок рисования карандашом.построение поэтапно

Хитрый периметрСкачать

Хитрый периметр

Задача, которую боятсяСкачать

Задача, которую боятся

ПОСТРОИТЬ ПРОЕКЦИИ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКА ПО ЗАДАННЫМ УСЛОВИЯМ. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ.Скачать

ПОСТРОИТЬ ПРОЕКЦИИ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКА ПО ЗАДАННЫМ УСЛОВИЯМ. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ.

Объем пирамиды. Практическая часть. 11 класс.Скачать

Объем пирамиды. Практическая часть. 11 класс.

Делаем энергетическую пирамидуСкачать

Делаем энергетическую пирамиду

10 класс, 33 урок, Правильная пирамидаСкачать

10 класс, 33 урок, Правильная пирамида

Стереометрия "с нуля". Урок 9. Пирамида. ВычисленияСкачать

Стереометрия "с нуля". Урок 9. Пирамида. Вычисления
Поделиться или сохранить к себе: