В данной публикации мы рассмотрим, как найти радиус вписанного в конус шара (сферы), а также площадь его поверхности и объем.
Видео:Формулы для радиуса окружности #shortsСкачать
Нахождение радиуса шара/сферы
В любой конус можно вписать шар (сферу). Другими словами, вокруг любого шара можно описать конус.
Чтобы найти радиус шара (сферы), вписанного в конус, чертим осевое сечение конуса. Таким образом, мы получаем равнобедренный треугольник (в нашем случае – ABC), в который вписана окружность радиусом r.
Радиус основания конуса (R) равняется половине основания данного треугольника (AC), а образующие ( l ) являются его боковыми сторонами (AB и BC).
Радиус окружности, вписанной в равнобедренный треугольник ABC, в том числе, является радиусом шара, вписанного в конус. Он находится по формуле:
Видео:Конус. 11 класс.Скачать
Формулы площади и объема шара/сферы
Зная радиус (r) можно найти площадь поверхности (S) сферы и объем (V) шара, ограниченного этой сферой:
Примечание: π округленно равняется 3,14.
Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать
Узнать ещё
Знание — сила. Познавательная информация
Видео:Цилиндр, конус, шар, 6 классСкачать
Шар, вписанный в конус
Рассмотрим некоторые соотношения, которые полезны при решении задач на шар, вписанный в конус.
В любой конус можно вписать шар. Вписанный в конус шар (или сфера, вписанная в конус) касается основания конуса в его центре, а боковой поверхности — по окружности. Центр шара (сферы) лежит на оси конуса.
При решении задач на шар, вписанный в конус, удобнее всего рассмотреть сечение комбинации тел плоскостью, проходящей через ось конуса и центр шара.
Это сечение представляет собой равнобедренный треугольник, боковые стороны которого — образующие конуса, а основание — диаметр конуса. Вписанный в этот треугольник круг — большой круг шара (то есть круг, радиус которого равен радиусу шара).
Для данного рисунка образующие SA=SB=l, высота конуса SO=H, радиус вписанного шара OO1=O1F=R. Так как центр вписанного круга — точка пересечения биссектрис треугольника, то ∠OBO1=∠FBO1, OB=r — радиус конуса.
Рассмотрим прямоугольный треугольник SOB. По свойству биссектрисы треугольника:
По теореме Пифагора
Рассмотрим прямоугольный треугольник OO1B.
Если ∠OBS=α, то ∠OBO1=α/2. Отсюда
Если сначала выразить радиус конуса через его высоту из прямоугольного треугольника SOB
то из треугольника OO1B выражаем радиус шара через высоту конуса:
Видео:Радиус описанной окружностиСкачать
Радиус и образующая конуса
Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать
Свойства
Поскольку радиус конуса характеризует размер его основания, то зная его, можно найти диаметр, длину окружности и площадь круга, лежащего в основании. Диаметр представляет собой удвоенный радиус, длина окружности – удвоенный радиус, умноженный на число π, а площадь круга – квадрат радиуса, умноженный на число π. d=2r P=2πr S_(осн.)=πr^2
Зная радиус и образующую конуса, можно уже найти его высоту, угол между образующей и основанием, угол раствора конуса. Высота конуса через радиус и образующую ищется по теореме Пифагора в прямоугольном треугольнике, оттуда же можно вычислить и угол β через тригонометрические отношения сторон. Угол α можно найти из равнобедренного треугольника, образованного двумя образующими и диаметром, отняв из 180 градусов два угла β. (рис.40.1, 40.2) h=√(l^2-r^2 ) cosβ=r/l α=180°-2β
Площадь боковой поверхности конуса равна произведению полупериметра основания на образующую или произведению числа π на радиус и образующую. Чтобы найти площадь полной поверхности, зная радиус и образующую конуса, необходимо прибавить к площади боковой поверхности произведение числа π на квадрат радиуса, что является площадью основания конуса. S_(б.п.)=πrl S_(п.п.)=S_(б.п.)+S_(осн.)=πrl+πr^2=πr(l+r)
Объем конуса, также как и объем пирамиды рассчитывается как одна треть основания, умноженная на высоту. V=1/3 S_(осн.) h=(πr^2 h)/3
Радиус сферы, вписанной в конус, вычисляется как произведение высоты на радиус конуса, деленное на сумму радиуса и образующей. Радиус сферы, описанной вокруг конуса, представляет собой отношение квадрата образующей к удвоенной высоте. (рис.40.3, 40.4) r_1=hr/(l+r)=(r√(l^2-r^2 ))/(l+r) R=l^2/2h
🔥 Видео
Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Конус. Практическая часть. 11 класс.Скачать
9 класс, 42 урок, КонусСкачать
Вписанная и описанная окружность - от bezbotvyСкачать
Радиус вписанной окружности #математика #егэ #огэ #огэ2023 #математикапрофиль2023 #fyp #школаСкачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Усеченный конус. 11 класс.Скачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Вписанная и описанная окружности | Лайфхак для запоминанияСкачать
найти радиус окружности, описанной вокруг треугольникаСкачать
Усеченный конус. Практическая часть. 11 класс.Скачать
РАДИУС ОСНОВАНИЯ ? Конус / база #506339Скачать
Окружность вписана в равносторонний треугольник, найти радиусСкачать
Окружность вписанная в треугольник и описанная около треугольника.Скачать