Ученица 7 класса проводит исследовательскую работу о параллельных прямых. В ходе работы изучает историю возникновения параллельных прямых, применение их в жизне и рассматривает две точки зрения об аксиоме параллельных прямых Евклида и Лобачевского.
- Скачать:
- Предварительный просмотр:
- Подписи к слайдам:
- Параллельные прямые. вокруг нас
- Параллельные прямые вокруг нас
- Параллельные прямые в природе, конечно, есть,
- Всех примеров их в быту нам не счесть
- Травинки и былинки растут перпендикулярно к земле,
- Бабочки порхают на лугу, Параллельно друг другу и цветку
- Снег ,который кружит в вышине,
- Самолёт в вышине чертит параллели
- Машины в пробке параллельно стоят
- В бассейне пловцы по параллельным дорожкам плывут,
- Ток по параллельным прямым бежит,
- На параллельные прямые в природе внимание обрати,
- Из истории параллельности прямых
- Колонны Парфенона (Др.греция ,447—438 до н
- Параллельные суть прямые, которые, находясь в одной плоскости и будучи продолжены в обе стороны неограниченно, ни с той, ни с другой стороны между собой не…
- Две прямые, лежащие в одной плоскости и равностоящие друг от друга
- Современное определение Параллельные прямые -это прямые, лежащие в одной плоскости и не пересекающиеся
- Проект по теме: Параллельные прямые в жизни
- «Управление общеобразовательной организацией: новые тенденции и современные технологии»
Видео:Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать
Скачать:
Вложение | Размер |
---|---|
zashch._slovo.doc | 37.5 КБ |
paral._proekt.ppt | 612 КБ |
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
Предварительный просмотр:
Тема моего проекта: «Параллельные прямые».
Цель : показать необходимость и значимость параллельных прямых.
Задачи: 1. Изучить историю возникновения параллельных прямых.
2. Рассмотреть применение параллельных прямых в жизни.
3. Сделать сравнительный анализ аксиомы параллельных прямых Евклида и Лобачевского.
Без параллельных прямых невозможна наша жизнь!
Для решения поставленных задач и проверки исходных положений применяются следующие методы исследования: анализ научной литературы; наблюдения, беседы, тесты.
На уроках геометрии мало времени дается на изучение параллельных прямых. Отсюда возникает проблема — недостаток информации по теме «параллельные прямые» в школьном курсе математики.
В жизни мы часто встречаемся с понятиями параллельные прямые.
Название параллельных прямых произошло от греческого слова «параллелой», которое означает «рядом идущие».
Рассмотрим разные определения параллельных прямых Евклида и Посидония. А теперь то современное определение, которое используем мы.
Для обозначения параллельности двух прямых древнегреческие математики использовали знак «=». Однако когда в 18в. этот знак стал использоваться как знак равенства, параллельность стали обозначать с помощью знака «//». И если прямые а и в параллельны, то мы будем записывать это так: а//в.
Мы привыкли слышать и видеть, что параллельные прямые никогда не пересекаются!
Действительно ли невозможно пересечение параллельных прямых?
Быть может существует точка пересечения параллельных прямых?
Попытаемся ответить на эти вопросы.
В жизни мы часто встречаемся с понятием параллельности.
При строительстве зданий строго учитывается понятие параллельности.
Самый наглядный пример параллельности прямых — железнодорожное полотно.
Еще одним примером применения понятия параллельных прямых, является эскалатор.
Все эти устройства помогают нам в повседневной жизни. Если бы не было параллельных прямых, то например, произошло крушение поезда или замыкание проводов и нет электричества. Но свойства параллельных прямых используется гораздо шире.
Но с другой стороны мы столкнулись со странным явлением: устремляя взгляд далеко в бесконечность, можно увидеть пересечение параллельных прямых!
В чем же дело? Чтобы ответить на этот вопрос обратимся к великим ученым.
Но сначала мы обратились к учащимся 7 класса. С ними провели эксперимент «Иллюзии зрения». Учащимся задали вопрос: везде ли на картинках параллельные прямые? Результаты опроса таковы: участвовали 20 человек из них: 11 – 55% считают параллельно, 9 -45% нет.
Вывод: в геометрии истинность каждого утверждения необходимо доказывать, нельзя полагаться только на наблюдения.
Положительный момент: благодаря зрительным искажениям существует живопись.
При изучении геометрии мы опираемся на ряд аксиом. Аксиомы – это положения, которые применяются в качестве исходных. В развитии геометрии важную роль сыграла аксиома, которая в «Началах» Евклида называлась пятым постулатом.
Многие математики, начиная с древних времен, предпринимали попытки доказать пятый постулат Евклида используя другие аксиомы. Однако эти попытки каждый раз оказывались неудачными.
И стояла геометрия Евклида,
Как египетская чудо-пирамида.
Строже выдумать строение невозможно,
Лишь одна была в ней глыба ненадёжна.
Аксиома называлась «параллели».
Разгадать её загадку не сумели.
В конце 18в. у некоторых ученых возникла мысль о невозможности доказать пятый постулат. Огромную роль в решении этого непростого вопроса сыграл великий русский математик Николай Иванович Лобачевский.
И подумал Лобачевский:
« Но ведь связана с природой аксиома!
Мы природу понимаем по-земному.
Во Вселенной расстоянья неземные,
Могут действовать законы там иные!
Параллельные пойдут непараллельно!
Там, где звёздный мир раскинулся без края, —
Аксиома параллели — там другая!».
И Евклид и Лобачевский говорят об одном и том же: о параллельных прямых. Но у одного из них параллельные прямые не пересекаются, а другой говорит о существовании точки пересечения параллельных прямых.
И оба они по своему правы!
Евклид рассматривает параллельность на плоскости .
Лобачевский видит плоскость в пространстве (именно поэтому его геометрию называют воображаемой).
Изучив вопросы по данной теме мы пришли к выводам:
- каждый разносторонне развитый ученик должен знать историю параллельных прямых
- параллельные прямые часто встречаются в окружающем нас мире, поэтому они очень нужны.
- параллельные прямые не пересекаются на плоскости!
- в пространстве параллельность прямых исчезает – существует точка пересечения параллельных прямых !
Несмотря на все кажущиеся странности, геометрия Лобачевского является настоящей геометрией нашего мира, и Евклидова является только её составной частью. Но в пределах ежедневных измерений Евклидова геометрия дает ничтожно малые ошибки, и мы пользуемся именно ею.
Хочу закончить свое выступление такими словами: «Было бы легче остановить Солнце, легче сдвинуть Землю, чем свести параллели к схождению…».
Таким образом, цель достигнута, задачи решены.
Спасибо за внимание.
Предварительный просмотр:
Видео:Параллельные прямые (задачи).Скачать
Подписи к слайдам:
параллельные прямые Над проектом работала: Прилепова Юлия Под руководством учителя математики Прилеповой О.А.
Цель: Показать необходимость и значимость параллельных прямых
задачи: Изучить историю возникновения параллельных прямых Рассмотреть применение параллельных прямых в жизни. Сделать сравнительный анализ аксиомы параллельных прямых Евклида и Лобачевского.
Гипотеза Без параллельных прямых невозможна наша жизнь!
Проблема Недостаток информации по теме «параллельные прямые» в школьном курсе математики
немного из истории. «параллелой»- “ рядом идущие ” «друг подле друга проведенные» (перевод с греческого языка)
разные определения параллельных прямых. « Параллельные суть прямые, которые, находясь в одной плоскости и будучи продолжены в обе стороны неограниченно, ни с той, ни с другой стороны между собой не встречаются.» Евклид (в lll в. до н. э.)
разные определения параллельных прямых. «Две прямые, лежащие в одной плоскости и равностоящие друг от друга.» Посидоний ( I в. до н.э. )
Параллельные прямые -это прямые, лежащие в одной плоскости и не пересекающиеся. Современное Определение
a b a b a=b У. Оутред ( 1575-1660 ) Папп ( III в. н. э. )
При строительстве зданий строго учитывается понятие параллельности Самый наглядный пример параллельности прямых — железнодорожное полотно
Если бы не было параллельных прямых. замыкание, нет электричества крушение поезда
Но с другой стороны мы столкнулись со странным явлением: устремляя взгляд далеко в бесконечность, можно увидеть пересечение параллельных прямых! В чем же дело? Чтобы ответить на этот вопрос обратимся к великим ученым.
Эксперимент «Иллюзии зрения» ИТОГИ опроса: всего параллельно нет 20 55% 45% Ответ: параллельно. В геометрии истинность каждого утверждения необходимо доказывать, нельзя полагаться только на наблюдения. Положительный момент: благодаря зрительным искажениям существует живопись.
Аксиома параллельных прямых Через точку не лежащую на прямой, можно провести только одну прямую параллельной данной. Пятый постулат Евклида. «Начала»
Евклид ( III век до н . э . ) Древнегреческий математик, автор первого трактата по геометрии «Начала» (в 13 книгах). И стояла геометрия Евклида, Как египетская чудо-пирамида. Строже выдумать строение невозможно, Лишь одна была в ней глыба ненадёжна. Аксиома называлась «параллели». Разгадать её загадку не сумели.
Николай Иванович Лобачевский (1792 – 1856 гг.) И подумал Лобачевский: « Но ведь связана с природой аксиома! Мы природу понимаем по-земному. Во Вселенной расстоянья неземные, Могут действовать законы там иные! Параллельные пойдут непараллельно! Там, где звёздный мир раскинулся без края, — Аксиома параллели — там другая!».
«Чем отличается геометрия Лобачевского от геометрии Евклида?» через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её. через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её. Евклидова аксиома о параллельных: Аксиома Лобачевского о параллельных:
выводы Изучив вопросы по данной теме мы пришли к выводам: каждый разносторонне развитый ученик должен знать историю параллельных прямых параллельные прямые часто встречаются в окружающем нас мире, поэтому они очень нужны.
выводы параллельные прямые не пересекаются на плоскости! в пространстве параллельность прямых исчезает – существует точка пересечения параллельных прямых!
. Было бы легче остановить Солнце, легче сдвинуть Землю, чем свести параллели к схождению.
Видео:Задачи. Признак параллельности прямых. Доказать, что прямые параллельны. По рисунку.Скачать
Параллельные прямые. вокруг нас
Видео:Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать
Параллельные прямые вокруг нас
Параллельные прямые вокруг нас.
МБОУ Фоминская ООШ
Класс: 7
Урок: геометрия
Учитель математики: Лимарева О.Ф.
Видео:Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать
Параллельные прямые в природе, конечно, есть,
Параллельные прямые в природе, конечно, есть, .
Видео:ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ решение задач 7 класс геометрия АтанасянСкачать
Всех примеров их в быту нам не счесть
, Всех примеров их в быту нам не счесть.
Видео:Задачи на доказательство по геометрии. Признаки параллельности прямых.Скачать
Травинки и былинки растут перпендикулярно к земле,
Травинки и былинки растут перпендикулярно к земле, А значит они параллельны между собой все.
Видео:решение задач на параллельность прямыхСкачать
Бабочки порхают на лугу, Параллельно друг другу и цветку
Бабочки порхают на лугу, Параллельно друг другу и цветку.
Видео:Параллельные прямые. 6 класс.Скачать
Снег ,который кружит в вышине,
Снег ,который кружит в вышине, Параллельным слоем лежит на земле.
Видео:Параллельность прямых. 10 класс.Скачать
Самолёт в вышине чертит параллели
Самолёт в вышине чертит параллели. А возвратившись с полёта, Садится параллельно на полосу взлёта.
Видео:Параллельность прямых. Практическая часть. 10 класс.Скачать
Машины в пробке параллельно стоят
Машины в пробке параллельно стоят. А если водитель нарушит закон, то будет очень наказан он.
Видео:10 класс, 4 урок, Параллельные прямые в пространствеСкачать
В бассейне пловцы по параллельным дорожкам плывут,
В бассейне пловцы по параллельным дорожкам плывут, На стадионе легкоатлеты параллельно друг другу бегут. Дорожки никогда не пересекутся, Спортсмены никогда не столкнутся.
Видео:7 класс, 26 урок, Практические способы построения параллельных прямыхСкачать
Ток по параллельным прямым бежит,
Ток по параллельным прямым бежит, Поезд по рельсам мчит.
Видео:Геометрия 7 класс (Урок№20 - Аксиома параллельных прямых.)Скачать
На параллельные прямые в природе внимание обрати,
На параллельные прямые в природе внимание обрати, Ведь это и паутинки и цветы.
Видео:Урок ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕСкачать
Из истории параллельности прямых
Из истории параллельности прямых
Видео:Параллельные прямые циркулемСкачать
Колонны Парфенона (Др.греция ,447—438 до н
«параллелой»- “рядом идущие” «друг подле друга проведенные» (перевод с греческого языка)
Колонны Парфенона (Др.греция ,447—438 до н. э) тоже параллельны.
Видео:Параллельные прямыеСкачать
Параллельные суть прямые, которые, находясь в одной плоскости и будучи продолжены в обе стороны неограниченно, ни с той, ни с другой стороны между собой не…
разные определения параллельных прямых.
« Параллельные суть прямые,
которые, находясь в одной плоскости и
будучи продолжены в обе
стороны неограниченно,
ни с той, ни с другой
стороны между
собой не встречаются.»
Евклид
(в lll в. до н. э.)
Видео:Контрольная работа по теме: "Параллельные прямые" | Геометрия 7 классСкачать
Две прямые, лежащие в одной плоскости и равностоящие друг от друга
разные определения параллельных прямых.
«Две прямые, лежащие
в одной плоскости
и равностоящие
друг от друга.»
Посидоний
( I в. до н.э. )
Видео:4. Параллельные прямые в пространствеСкачать
Современное определение Параллельные прямые -это прямые, лежащие в одной плоскости и не пересекающиеся
Параллельные прямые -это прямые, лежащие в одной плоскости и не пересекающиеся.
Проект по теме: Параллельные прямые в жизни
«Управление общеобразовательной организацией:
новые тенденции и современные технологии»
Свидетельство и скидка на обучение каждому участнику
I . Теоретическая часть
1.1. Определение параллельных прямых . . 4
1.2. Параллельные прямые в жизни . 4
1.3. Иллюзии параллельных прямых . 5
1.4.Способы построения параллельных прямых . 6
1.5.Профессиональные способы построения параллельных прямых …………7
1.6.Применение параллельных прямых в геометрии …………………………..7
II . Практическая часть
2.1. Анкетирование учащихся. 9
2.2. Изготовление проектного продукта…………… . 9
Список литературы . 11
Каждый современный ученик должен быть всесторонне развитым, поэтому ему необходимо владеть не только математическими знаниями, но и знать историю математики . Школьная программа , к сожалению, не предусматривает изучение вопроса «История параллельных прямых», а способы построения параллельных прямых изучаются не в полном объёме. Исходя из этого, я решила расширить свои знания в области математики, а именно: изучить историю параллельных прямых, показать их значимость и закрепить умения строить параллельные прямые на линованной и нелинованной бумаге. Поэтому выбранная мной тема исследования актуальна.
Гипотеза: Без параллельных прямых невозможна наша жизнь.
Цель моего проекта: Показать необходимость и значимость параллельных прямых.
1. Собрать материал по теме, изучив литературу и Интернет-источники.
2. Изучить определения, способы построения и применение параллельных прямых в жизни .
3. Провести анкетирование обучающихся школы.
4. Составить буклет “ Параллельные прямые в жизни”.
1.1. Определение параллельных прямых
С греческого языка понятие «параллелос» переводится «рядом идущий» или «проведенный друг возле друга». Этот термин использовался в древней школе Пифагора еще до того, как параллельные прямые получили свое определение.
В домашних справочных и энциклопедических изданиях я нашла несколько определений понятиям «параллель» и «параллельные прямые». Например, в самом популярном толковом словаре русского языка С. И. Ожегова и Н. Ю. Шведовой параллелью в математике называется «Прямая, не пересекающаяся другой прямой, лежащей с ней в одной плоскости».
А из занимательного толкового словаря В. И. Даля – “ПАРАЛЛЕЛЬ” ж. — параллельная линия, равна во всех точках от другой отстоящая и потому никогда не могущая с нею встретиться.
В евклидовой геометрии параллельными прямыми называются прямые, которые лежат в одной плоскости и не пересекаются. В другом варианте определения, совпадающие прямые также считаются параллельными (Приложение 4, рис. 27)
Через любую точку, не лежащую на прямой, можно провести прямую, параллельную данной, и притом только одну. Последняя часть этого утверждения — знаменитый пятый постулат Евклида . Отказ от пятого постулата ведёт к геометрии Лобачевского (Приложение 8).
В геометрии Лобачевского вместо неё принимается следующая аксиома: Через точку, не лежащую на данной прямой, проходят, по крайней мере, две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её (Приложение 4, рис. 25; рис. 26).
Согласно историческим фактам Евклидом в III в. До н.э. в его трудах все же был раскрыт смысл понятия параллельных прямых (Приложение 4, рис. 1).
В древности знак для обозначения параллельных прямых имел отличный вид того, что мы используем в современной математике. Например, древнегреческим математиком Паппом в III в. Н.э. параллельность обозначалась с помощью знака равенства. Т.е. тот факт, что прямая l параллельна прямой m ранее обозначался «l=m». Позднее для обозначения параллельности прямых стали использовать привычный нам знак « ∥» , а знак равенства стали использовать для обозначения равенства чисел и выражений.
1.2. Параллельные прямые в жизни
Зачастую мы не замечаем, что в обычной жизни нас окружает огромное число параллельных прямых. Например, в нотной тетради и сборнике песен с нотами нотный стан выполнен с помощью параллельных линий (Приложение 4, рис. 2). Также параллельные линии встречаются и в музыкальных инструментах (например, струны арфы, гитары, клавиши фортепиано и т.п.) (Приложение 4, рис. 3). Электрические провода, которые расположены вдоль улиц и дорог, также проходят параллельно (Приложение 4, рис. 4). Рельсы линий метро и железных дорог располагаются параллельно. Кроме быта параллельные линии можно встретить в живописи, в архитектуре, при строительстве зданий (Приложение 4, рис. 5; рис. 6 ; рис. 7).
На представленных изображениях архитектурные сооружения содержат параллельные прямые. Использование параллельности прямых в строительстве помогает увеличить срок службы таких сооружений и придает им необычайную красоту, привлекательность и величие. Линии электропередач также умышленно проводятся параллельно, чтобы избежать их пересечения или соприкосновения, что привело бы к замыканию, перебоям и отсутствию электричества. Чтобы поезд мог беспрепятственно перемещаться, рельсы также выполнены параллельными линиями. В живописи параллельные линии изображают сводящимися в одну линию или близкими к тому. Такой прием называется перспективой, которая следует из-за иллюзии зрения. Если долго смотреть вдаль, то параллельные прямые будут похожи на две сходящиеся линии.
1.3.Иллюзии параллельных прямых
Слово «иллюзия» происходит от латинского illusere – обманывать.
Зрительная иллюзия – ошибка в зрительном восприятии, искажение пространственных соотношений признаков воспринимаемых объектов, ошибка в оценке и сравнении между собой длин отрезков, величин углов, расстояний между предметами, в восприятии формы предметов, совершаемые наблюдателем при определенных условиях.
Начало изучению зрительных иллюзий положило обнаружение немецким астрофизиком Ф. Цёлльнером (1860 г.) в рисунке купленной ткани эффекта визуального схождения и расхождения вертикальных параллельных линий при пересечении их короткими косыми линиями. Эта иллюзия наиболее сильно проявляется, когда пересекающееся линии образуют угол, равный 45° (Приложение 3, рис. 8).
На уроках геометрии, приступая к решению задачи, мы, как правило, первым делом строим чертёж, опираясь на свое зрительное восприятие. Но такой подход к решению задачи часто приводит к ошибочным выводам, а значит к неверному решению. Мы привыкли доверять собственному зрению, однако оно нередко обманывает нас, показывая то, чего в действительности не существует. В такие моменты мы сталкиваемся со зрительными иллюзиями — ошибками зрительного восприятия (Приложение 3, рис. 9; рис. 10; рис. 11).
В настоящее время люди не только поражаются обманам зрения и забавляются зрительными иллюзиями, но и сознательно используют их в своей практической деятельности. Иллюзии применяются в архитектуре, изобразительном, цирковом искусстве, кинематографии и даже в военном деле (Приложение 3, рис. 12; рис. 13; рис. 14).
Но с другой стороны мы столкнулись со странным явлением: устремляя взгляд далеко в бесконечность, можно увидеть пересечение параллельных прямых!
В чем же дело? Чтобы ответить на этот вопрос обратимся к великим ученым.
Но сначала я обратилась к учащимся 7 Б класса. С ними провела эксперимент «Иллюзии зрения». Учащимся задали вопрос: везде ли на картинках параллельные прямые? Результаты опроса таковы: участвовали 20 человек из них: 7 – 35% считают параллельно, 13 -65% нет (Приложение 3).
Вывод: в геометрии истинность каждого утверждения необходимо доказывать, нельзя полагаться только на наблюдения.
Положительный момент: благодаря зрительным искажениям существует живопись.
1.4. Способы построения двух параллельных прямых
Изучив теоретические сведения, касающиеся параллельных прямых, возникла необходимость к изучению практических способов геометрических построений параллельных прямых на плоскости. Рассмотрим некоторые из них (Приложение 7):