Тангенс двух на окружности

Значения тангенса и котангенса на тригонометрическом круге

В прошлой статье мы познакомились с тригонометрическим кругом и научились находить значения синуса и косинуса основных углов.

Как же быть с тангенсом и котангенсом ? Об этом и поговорим сегодня.

Где же на тригонометрическом круге оси тангенсов и котангенсов?

Ось тангенсов параллельна оси синусов (имеет тоже направление, что ось синусов) и проходит через точку (1; 0).

Ось котангенсов параллельна оси косинусов (имеет тоже направление, что ось косинусов) и проходит через точку (0; 1).

На каждой из осей располагается вот такая цепочка основных значений тангенса и котангенса: Тангенс двух на окружностиПочему так?

Я думаю, вы легко сообразите и сами. 🙂 Можно по-разному рассуждать. Можете, например, использовать тот факт, что Тангенс двух на окружностии Тангенс двух на окружности

Тангенс двух на окружности

Собственно, картинка за себя сама говорит.

Если не очень все же понятно, разберем примеры:

Пример 1.

Вычислить Тангенс двух на окружности

Находим на круге Тангенс двух на окружности. Эту точку соединяем с точкой (0;0) лучом (начало – точка (0;0)) и смотрим, где этот луч пересекает ось тангенсов. Видим, что Тангенс двух на окружности

Ответ: Тангенс двух на окружности

Пример 2.

Вычислить Тангенс двух на окружности

Находим на круге Тангенс двух на окружности. Точку (0;0) соединяем с указанной точкой лучом. И видим, что луч никогда не пересечет ось тангенсов.

Тангенс двух на окружностине существует.

Ответ: не существует

Пример 3.

Вычислить Тангенс двух на окружности

Тангенс двух на окружности

Находим на круге точку Тангенс двух на окружности(это та же точка, что и Тангенс двух на окружности) и от нее по часовой стрелке (знак минус!) откладываем Тангенс двух на окружности(Тангенс двух на окружности). Куда попадаем? Мы окажемся в точке, что на круге у нас (см. рис.) названа как Тангенс двух на окружности. Эту точку соединяем с точкой (0;0) лучом. Вышли на ось тангенсов в значение Тангенс двух на окружности.

Так значит, Тангенс двух на окружности

Ответ: Тангенс двух на окружности

Пример 4.

Вычислить Тангенс двух на окружности

Тангенс двух на окружности

Поэтому от точки Тангенс двух на окружности(именно там будет Тангенс двух на окружности) откладываем против часовой стрелки Тангенс двух на окружности.

Выходим на ось котангенсов, получаем, что Тангенс двух на окружности

Ответ: Тангенс двух на окружности

Пример 5.

Вычислить Тангенс двух на окружности

Находим на круге Тангенс двух на окружности. Эту точку соединяем с точкой (0; 0). Выходим на ось котангенсов. Видим, что Тангенс двух на окружности

Ответ: Тангенс двух на окружности

Тангенс двух на окружностиТеперь, умея находить по тригонометрическому кругу значения тригонометрических функций (а я надеюсь, что статья, где мы начинали знакомство с кругом и учились вычислять значения синусов и косинусов, вами прочитана…), вы можете пройт и тест по теме «Нахождение значений косинуса, синуса, тангенса и котангенса различных углов».

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Содержание
  1. Узнать ещё
  2. Тангенс 1, tg 2, tg 3
  3. Тангенс
  4. Тангенс – одна из тригонометрических функций. Как и для всех других функций, значение тангенса определяется для конкретного угла или числа (в этом случае используют числовую окружность.
  5. Аргумент и значение тангенса
  6. Тангенс острого угла
  7. Тангенс можно определить с помощью прямоугольного треугольника — он равен отношению противолежащего катета к прилежащему.
  8. Вычисление тангенса числа или любого угла
  9. Для чисел, а также для тупых, развернутых углов и углов больших (360°) тангенс чаще всего определяют с помощью синуса и косинуса, через их отношение:
  10. Прямая проходящая через начало отсчета на числовой окружности и параллельная оси ординат (синусов) называется осью тангенсов. Направление оси тангенсов и оси синусов совпадает.
  11. Чтобы определить тангенс с помощью числовой окружности, нужно: 1) Отметить соответствующую аргументу тангенса точку на числовой окружности. 2) Провести прямую через эту точку и начало координат и продлить её до оси тангенсов. 3) Найти координату пересечения этой прямой и оси тангенсов.
  12. В отличие от синуса и косинуса значение тангенса не ограничено и лежит в пределах от (-∞) до (+∞), то есть может быть любым.
  13. Знаки по четвертям
  14. Связь с другими тригонометрическими функциями:
  15. 📹 Видео

Видео:Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

Узнать ещё

Знание — сила. Познавательная информация

Видео:Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружностиСкачать

Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружности

Тангенс 1, tg 2, tg 3

Когда требуется найти тангенс 1, tg 2, tg 3, tg 4, tg 6, помогут единичная окружность и линия тангенсов.

Для начала отметим на единичной окружности углы в 1, 2, 3, 4, 5 и 6 радиан. Это можно сделать тремя способами.

1) 1 радиан — это приблизительно 57 градусов. Соответственно, через каждые 57 градусов отмечаем: 1 радиан, 2, 3…

2) 1 радиан — это угол, длина дуги которого равна радиусу окружности. В этом случае каждую следующую отметку ставим, откладывая приблизительно дугу длиной в радиус.

3) если вспомнить, что п — это приближенно 3,14, и рассчитать п/2, 3п/2, 2п, а 1,2, 3,4,5 и 6 радиан — ориентируясь на эти значения.

Получаем приблизительно такой чертеж:

Тангенс двух на окружности

Если нужно сравнить, например, tg1 и tg2, этого чертежа вполне достаточно. 1 радиан — угол 1й четверти, где тангенс положителен, а 2 радиана — угол 2й четверти, где тангенс отрицателен (см. как запомнить знаки тангенса ). Поэтому tg1 > tg2.

Когда требуется сравнить тангенсы одного знака, например, tg 5 и tg 6, единичной окружности недостаточно. Найти значения tg1, tg2, tg3, tg4, tg6 можно также с помощью линии тангенсов.

Линия тангенсов — это касательная к единичной окружности в точке (1;0). То есть линия тангенсов — это прямая x=1.

Тангенс двух на окружности

Если через точку О — начало отсчета- и отмеченный на единичной окружности угол в 1 радиан провести луч, то он пересечет линию тангенсов в точке, которая показывает значения tg 1. Поскольку окружность единичная, то значения 2,3,4 и т.д. получаем, откладывая на линии тангенсов длину радиуса. Соответственно, tg 1 получаем где-то посредине между 1 и 2, чуть ближе к 2. Аналогично на линии тангенсов определяем, чему равен тангенс 2, тангенс 3, тангенс 4, тангенс 5 и тангенс 6. Отсюда делаем вывод: tg5 tg5, tg4 Светлана Иванова, 14 Окт 2012

Видео:Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать

Как видеть тангенс? Тангенс угла с помощью единичного круга.

Тангенс

Тангенс – одна из тригонометрических функций. Как и для всех других функций, значение тангенса определяется для конкретного угла или числа (в этом случае используют числовую окружность.

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по Математике

Аргумент и значение тангенса

Тангенс двух на окружности

Аргументом тангенса может быть:
— как число или выражение с Пи: (1,3), (frac), (π), (-frac) и т.п.
— так и угол в градусах: (45^°), (360^°),(-800^°), (1^° ) и т.п.

Для обоих случаев тангенс вычисляется одинаковым способом – либо через значения синуса и косинуса, либо через тригонометрический круг (см. ниже).

Видео:Тригонометрическая окружность tg x и ctg xСкачать

Тригонометрическая окружность tg x и ctg x

Тангенс острого угла

Тангенс можно определить с помощью прямоугольного треугольника — он равен отношению противолежащего катета к прилежащему.

1) Пусть дан угол и нужно определить тагенс этого угла.

Тангенс двух на окружности

2) Достроим на этом угле любой прямоугольный треугольник.

Тангенс двух на окружности

3) Измерив, нужные стороны, можем вычислить тангенс.

Тангенс двух на окружности

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Вычисление тангенса числа или любого угла

Для чисел, а также для тупых, развернутых углов и углов больших (360°) тангенс чаще всего определяют с помощью синуса и косинуса, через их отношение:

Пример. Вычислите (tg:0).
Решение: Чтобы найти тангенс нуля нужно найти сначала синус и косинус (0). И то, и другое найдем с помощью тригонометрического круга :

Тангенс двух на окружности

Точка (0) на числовой окружности совпадает с (1) на оси косинусов, значит (cos:0=1). Если из точки (0) на числовой окружности провести перпендикуляр к оси синусов, то мы попадем в точку (0), значит (sin:⁡0=0). Получается: (tg:0=) (frac) (=) (frac) (=0).

Пример. Вычислите (tg:(-765^circ)).
Решение: (tg: (-765^circ)=) (frac)
Что бы вычислить синус и косинус (-765^°). Отложим (-765^°) на тригонометрическом круге. Для этого надо повернуть в отрицательную сторону на (720^°) , а потом еще на (45^°).

Тангенс двух на окружности

Однако можно определять тангенс и напрямую через тригонометрический круг — для этого надо на нем построить дополнительную ось:

Прямая проходящая через начало отсчета на числовой окружности и параллельная оси ординат (синусов) называется осью тангенсов. Направление оси тангенсов и оси синусов совпадает.

Тангенс двух на окружности

Ось тангенсов – это фактически копия оси синусов, только сдвинутая. Поэтому все числа на ней расставляются так же как на оси синусов.

Чтобы определить тангенс с помощью числовой окружности, нужно:
1) Отметить соответствующую аргументу тангенса точку на числовой окружности.
2) Провести прямую через эту точку и начало координат и продлить её до оси тангенсов.
3) Найти координату пересечения этой прямой и оси тангенсов.

Тангенс двух на окружности

2) Проводим через данную точку и начало координат прямую.

Тангенс двух на окружности

3) В данном случае координату долго искать не придется – она равняется (1).

Пример. Вычислите (tg: 45°) и (tg: (-240°)).
Решение:
Для угла (45°) ((∠KOA)) тангенс будет равен (1), потому что именно в таком значении сторона угла, проходящая через начало координат и точку (A), пересекает ось тангесов. А для угла (-240°) ((∠KOB)) тангенс равен (-sqrt) (приблизительно (-1,73)).

Тангенс двух на окружности

Значения для других часто встречающихся в практике углов смотри в тригонометрической таблице.

В отличие от синуса и косинуса значение тангенса не ограничено и лежит в пределах от (-∞) до (+∞), то есть может быть любым.

Тангенс двух на окружности

При этом тангенс не определен для:
1) всех точек (A) (значение в Пи: …(-) (frac) ,(-) (frac) , (frac) , (frac) , (frac) …; и значение в градусах: …(-630°),(-270°),(90°),(450°),(810°)…)
2) всех точек (B) (значение в Пи: …(-) (frac) ,(-) (frac) ,(-) (frac) , (frac) , (frac) …; и значение в градусах: …(-810°),(-450°),(-90°),(270°)…) .

Так происходит потому, что прямая проходящая через начало координат и любую из этих точек никогда не пересечет ось тангенсов, т.к. будет идти параллельно ей. Поэтому в этих точках тангенс – НЕ СУЩЕСТВУЕТ (для всех остальных значений тангенс может быть найден).

Из-за этого при решении тригонометрических уравнений и неравенств с тангенсом необходимо учитывать ограничения на ОДЗ .

Видео:Тангенс и котангенс на тригонометрической окружности. Формулы приведения.Скачать

Тангенс и котангенс на тригонометрической окружности. Формулы приведения.

Знаки по четвертям

С помощью оси тангенсов легко определить знаки по четвертям тригонометрической окружности. Для этого надо взять любую точку на четверти и определить знак тангенса для нее описанным выше способом. У всей четверти знак будет такой же.

Для примера на рисунке нанесены две зеленые точки в I и III четвертях. Для них значение тангенса положительно (зеленые пунктирные прямые приходят в положительную часть оси), значит и для любой точки из I и III четверти значение тангенса будет положительно (знак плюс).
С двумя фиолетовыми точками в II и IV четвертях – аналогично, но с минусом.

Тангенс двух на окружности

Видео:6 Линия тангенсов и линия котангенсовСкачать

6 Линия тангенсов и линия котангенсов

Связь с другими тригонометрическими функциями:

котангенсом того же угла: формулой (ctg⁡:x=) (frac)
Другие наиболее часто применяемые формулы смотри здесь .

📹 Видео

Занятие 5. Тангенс и котангенс. Основы тригонометрииСкачать

Занятие 5. Тангенс и котангенс. Основы тригонометрии

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэСкачать

Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэ

Геометрия 9 класс (Урок№10 - Взаимное расположение двух окружностей.)Скачать

Геометрия 9 класс (Урок№10 - Взаимное расположение двух окружностей.)

Тангенс и котангенс произвольного угла. 9 класс.Скачать

Тангенс и котангенс произвольного угла. 9 класс.

9 класс, 8 урок, Взаимное расположение двух окружностейСкачать

9 класс, 8 урок, Взаимное расположение двух окружностей

10 класс, 20 урок, Функции y=tgx, y=ctgx, их свойства и графикиСкачать

10 класс, 20 урок, Функции y=tgx, y=ctgx, их свойства и графики

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

10 класс, 13 урок, Синус и косинус Тангенс и котангенсСкачать

10 класс, 13 урок, Синус и косинус  Тангенс и котангенс

Отбор арктангенса по окружности | Тригонометрия ЕГЭ 2020Скачать

Отбор арктангенса по окружности | Тригонометрия ЕГЭ 2020
Поделиться или сохранить к себе: