- 10 класс. Геометрия. Параллельные прямые в пространстве.
- Вопросы
- Поделись с друзьями
- Комментарии преподавателя
- 1. Тема и цели урока
- 2. Определение параллельных прямых в пространстве
- 3. Теорема 1 и ее доказательство
- 4. Лемма (о двух параллельных прямых, пересекающих плоскость) и ее доказательство
- 5. Теорема 2 и ее доказательство
- 6. Итоги урока
- Куб — свойства, виды и формулы
- Элементы куба
- Грань
- Ребро
- Вершина
- Центр грани
- Центр куба
- Ось куба
- Диагональ куба
- Диагональ грани куба
- Объем куба
- Периметр куба
- Площадь поверхности
- Сфера, вписанная в куб
- Сфера, описанная вокруг куба
- Координаты вершин куба
- Свойства куба
- Определение параллельных прямых в пространстве
- Понятие о параллельных прямых
- Теоремы о параллельности двух прямых
- Свойства параллельных прямых в пространстве
- Пример задачи о параллельных прямых
10 класс. Геометрия. Параллельные прямые в пространстве.
- Оглавление
- Занятия
- Обсуждение
- О курсе
Вопросы
Задай свой вопрос по этому материалу!
Поделись с друзьями
Комментарии преподавателя
Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать
1. Тема и цели урока
Мы уже изучали параллельные прямые в планиметрии. Теперь нужно дать определение параллельных прямых в пространстве и доказать соответствующие теоремы.
Видео:10 класс, 4 урок, Параллельные прямые в пространствеСкачать
2. Определение параллельных прямых в пространстве
Определение: Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются (Рис. 1.).
Обозначение параллельных прямых: a || b.
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
3. Теорема 1 и ее доказательство
Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.
Дано: прямая а, (Рис. 2.)
Доказать: существует единственная прямая b || a,
Через прямую а и точку , не лежащую на ней, можно провести единственную плоскость α (Рис. 3.). В плоскости α можно провести единственную прямую b, параллельную а, проходящую через точку M (из аксиомы планиметрии о параллельных прямых). Существование такой прямой доказано.
Докажем единственность такой прямой. Предположим, что существует другая прямая с, проходящая через точку M и параллельная прямой а. Пусть параллельные прямые а и с лежат в плоскости β. Тогда плоскость β проходит через точку M и прямую а. Но через точку M и прямую а проходит единственная плоскость (в силу теоремы 2). Значит, плоскости β и α совпадают. Из аксиомы параллельных прямых, следует, что прямые b и с совпадают, так как в плоскости существует единственная прямая, проходящая через данную точку и параллельная заданной прямой. Единственность доказана.
Видео:24. Определение параллельных прямыхСкачать
4. Лемма (о двух параллельных прямых, пересекающих плоскость) и ее доказательство
Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.
Дано: а || b,
Доказать:
Доказательство: (Рис. 4.)
Существует некоторая плоскость β, в которой лежат параллельные прямые а и b. Точка М принадлежит и плоскости α, и прямой а, которая лежит в плоскости β. Значит, М – общая точка плоскостей α и β. А по третьей аксиоме, существует прямая MN, по которой пересекаются эти две плоскости.
Прямая MN пересекается с прямой b.(так как в противном случае, получается, что прямые MN и b параллельные, то есть a = MN, что невозможно, так как прямая а пересекается с плоскостью α в точке М по условию). То есть точка N – это точка пересечения прямой b и плоскости α..
Докажем, что N — это единственная общая точка прямой b и плоскости α. Допустим, что есть другая точка, но тогда прямая bпринадлежит плоскости α (по второй аксиоме). То есть MN = b, что невозможно, так как прямые а и bпараллельны, а прямая а должна пересекаться с прямой MN. Лемма доказана.
Видео:Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать
5. Теорема 2 и ее доказательство
Если две прямые параллельны третьей, то они параллельны.
Дано:
Доказать: .
Доказательство: (Рис. 5.)
Выберем произвольную точку К на прямой b. Тогда существует единственная плоскость α, проходящая черезточку К и прямую а. Докажем, что прямая bлежит в плоскости α.
Предположим противное. Пусть прямая bне лежит в плоскости α. Тогда прямая bпересекает плоскость α в точке К. Так как прямые bи с параллельны, то, согласно лемме, прямая с также пересекает плоскость α. Прямые а и с также параллельны, значит, по лемме, прямая а также пересекает плоскость α, но это невозможно, так как прямая а лежит в плоскости α. Получили противоречие. То есть, предположение было неверным, а значит, прямая bлежит в плоскости α.
Докажем, что прямые а и b не пересекаются. Предположим противное. Пусть прямые а и bпересекаются в некоторой точке М. Но тогда получается, что через точку М проходят две прямые а и b, параллельные прямой с, что невозможно в силу теоремы 1. Получили противоречие. Значит, прямые а и b не пересекаются.
Мы доказали, что прямые а и b не пересекаются и что существует плоскость α, в которой лежат прямые а и b. Значит, прямые а и bпараллельны (по определению), что и требовалось доказать.
Видео:Параллельность прямых. Практическая часть. 10 класс.Скачать
6. Итоги урока
Итак, мы дали определение параллельных прямых и доказали теорему о параллельных прямых в пространстве. Также мы доказали важную лемму о пересечении параллельными прямыми плоскости и с помощью этой леммы доказали теорему: если две прямые параллельны третьей, то они параллельны. Эта теория будет использоваться дальше и для доказательства других теорем, и для решения задач.
Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать
Куб — свойства, виды и формулы
Среди многогранников куб – это один из наиболее известных объектов, знакомых с далёкого детства. Более подробно эта тема изучается на уроках геометрии в старших классах, когда от фигур на плоскости переходят к телам в пространстве.
Кубу можно дать определение различными способами, каждый из которых только подчеркнёт тот или иной класс тел в пространстве, выделит основные признаки и особенности:
многогранник, у которого все рёбра равны, а грани попарно перпендикулярны;
прямая призма, все грани которой есть квадраты;
прямоугольный параллелепипед, все рёбра которого равны.
Всеми этими и многими другими подобными формулировками геометрия позволяет описывать одну и ту же фигуру в пространстве.
Видео:Параллельность прямых. 10 класс.Скачать
Элементы куба
Основными элементами многогранника считаются грани, рёбра, вершины.
Грань
Плоскости, образующие поверхность куба, называются гранями. Другое название – стороны.
Интересно, сколько граней у куба и каковы их особенности. Всего граней шесть. Две из них, параллельные друг другу, считаются основаниями, остальные – боковыми.
Грани куба попарно перпендикулярны, являются квадратами, равны между собой.
Ребро
Линии пересечения сторон называются рёбрами.
Не каждый школьник может ответить, сколько рёбер у куба. Их двенадцать. Они имеют одинаковые длины. Те из них, что обладают общим концом, расположены под прямым углом по отношению к любому из двух остальных.
Рёбра могут пересекаться в вершине, быть параллельными. Не лежащие в одной грани ребра, являются скрещивающимися.
Вершина
Точки пересечения рёбер называются вершинами. Их число равно восьми.
Центр грани
Отрезок, соединяющий две вершины, не являющийся ребром, называется диагональю.
Пересечение диагоналей грани считается центром грани – точкой, равноудалённой от всех вершин и сторон квадрата. Это есть центр симметрии грани.
Центр куба
Пересечение диагоналей куба является его центром – точкой, равноудалённой от всех вершин, рёбер и сторон многогранника.
Это есть центр симметрии куба.
Ось куба
Рассматриваемый многогранник имеет несколько осей ортогональной (под прямым углом) симметрии. К ним относятся: диагонали куба и прямые, проходящие через его центр параллельно рёбрам.
Диагональ куба
Отрезок, соединяющий две вершины, не принадлежащие одной стороне, называется диагональю рассматриваемого многогранника.
Учитывая, что ребра куба имеют равные измерения a, можно найти длину диагонали:
Формула доказывается с помощью дважды применённой теоремы Пифагора.
Диагональ куба — одна из осей симметрии.
Все диагонали куба равны между собой и точкой пересечения делятся пополам.
Диагональ грани куба
Длина диагонали грани в √2 раз больше ребра, то есть:
Эта формула доказывается также с помощью теоремы Пифагора.
Видео:Взаимное расположение прямых в пространстве. 10 класс.Скачать
Объем куба
Как для любого параллелепипеда, объём куба равен произведению всех трёх измерений, которые в данном случае равны:
Видео:7 класс, 24 урок, Определение параллельных прямыхСкачать
Периметр куба
Сумма длин всех рёбер равна:
Видео:Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать
Площадь поверхности
Сумма площадей всех граней называется площадью поверхности куба. Она равна:
Видео:10 класс, 7 урок, Скрещивающиеся прямыеСкачать
Сфера, вписанная в куб
Такая сфера имеет центр, совпадающий с центром куба.
Радиус равен половине ребра:
Видео:Определение параллельных прямых | Геометрия 7-9 класс #25 | ИнфоурокСкачать
Сфера, описанная вокруг куба
Как для вписанной сферы, центр совпадает с точкой пересечения диагоналей, радиус равен половине диагонали:
Видео:Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать
Координаты вершин куба
В зависимости от расположения фигуры в системе координат, можно по-разному рассчитывать координаты вершин.
Наиболее часто используют следующий способ. Одна из вершин совпадает с началом координат, рёбра параллельны осям координат или совпадают с ними, координаты единичного куба в этом случае будут равны:
Такое расположение удобно для введения четырёхмерного пространства (вершины задаются всеми возможными бинарными наборами длины 4).
Видео:Параллельные прямые. 6 класс.Скачать
Свойства куба
Плоскость, рассекающая куб на две части, есть сечение. Его форма выглядит как выпуклый многоугольник.
Построение сечений необходимо для решения многих задач. Как правило, используется метод следов или условие параллельности прямых и плоскостей.
у куба все грани равны, являются квадратами;
у куба все рёбра равны;
один центр и несколько осей симметрии.
Видео:Скрещивающиеся прямыеСкачать
Определение параллельных прямых в пространстве
Видео:10 класс, 6 урок, Параллельность прямой и плоскостиСкачать
Понятие о параллельных прямых
Прямые (a) и (b) являются параллельными в трехмерном пространстве только в том случае, если они находятся в одной плоскости и не пересекаются.
Если рассмотреть примеры, то параллельные прямые мы можем наблюдать как противоположные края у прямоугольного или квадратного стола, железнодорожные рельсы и шпалы, провода линий электропередач, линии в тетради в полоску и прочее. Таких примеров из реального мира можно привести очень много.
Другими вариантами прямых, расположенных в 3D-пространстве, есть их скрещивание и пересечение. Пересекающимися есть прямые, имеющие общую точку, она же и есть точкой пересечения. Скрещивающимися есть прямые, расположенные в разных плоскостях и не параллельные между собой.
Есть ряд теорем, описывающих поведение параллельных прямых в пространстве. Рассмотрим их подробнее.
Видео:Параллельные прямые (задачи).Скачать
Теоремы о параллельности двух прямых
- если две прямые в пространстве перпендикулярные к одной плоскости, то они параллельные между собой;
- через точку в пространстве, что не расположена на заданной прямой, возможно провести лишь одну прямую, параллельную заданной.
Доказательство теоремы : Через прямую a и точку (M) , не находящуюся на данной прямой, проведем плоскость ∝. Эта плоскость определяется заданной прямой a и точкой (M) , то есть она однозначно определена.
Для доказательства этой теоремы применим евклидовую аксиому из планиметрии про параллельные прямые.
Таким образом, через точку (M) возможно проложить лишь одну прямую, параллельную прямой (a) , и ее существование доказано. Назовем эту прямую (b) .
Два отрезка будут параллельными при их расположении на параллельных прямых.
Видео:Угол между прямыми в пространстве. Практическая часть. 10 класс.Скачать
Свойства параллельных прямых в пространстве
Некоторые свойства пересекаются с вышеизложенными теоремами, но все же рассмотрим их все:
- имея две параллельных прямых, одна из которых параллельная третьей прямой, можно утверждать, что вторая тоже будет параллельна третьей;
- если из двух параллельных прямых одна пересекает некую плоскость, то и вторая так же будет ее пересекать. Это свойство является леммой про две параллельные прямые в пространстве, ее применяют при обоснованиях различных геометрических теорем;
- при помощи двух параллельных прямых можно изобразить однозначно заданную плоскость;
- через любую точку, находящуюся в 3D-пространстве и не расположенную на заданной прямой, возможно провести лишь одну прямую, что параллельна заданной.
Рассмотрим подробнее лемму про параллельные прямые и докажем ее. К примеру, некая прямая (b) пересекает плоскость (∝) в точке (M) , что расположена на заданной плоскости. Параллельные прямые a и образуют некую плоскость (β) . Таким образом, если точка (M) общая для плоскостей (∝) и (β) , то эти плоскости пересекаются, линию пересечения обозначим c, на ней расположена точка (M) .
Все прямые (a) , (b) и (c) расположены в плоскости (β) .
Не нашли что искали?
Просто напиши и мы поможем
В соответствии с аксиомой планиметрии, при пересечении одной из параллельных прямых третьей прямой, вторая так же будет ее пересекать.
В нашем варианте прямая a пересекает прямую c в точке (K) .
Точка (K) расположена одновременно на прямой a и на плоскости (∝) , значит она есть общей для них. Таким образом, прямая a пересекает плоскость (∝) .
Видео:10 класс, 5 урок, Параллельность трех прямыхСкачать
Пример задачи о параллельных прямых
Заданы прямые (a) и (b) , описывающиеся уравнениями. Определить, параллельны ли заданные прямые.
(a: == ) ;
При совпадении прямых или если они параллельны их направляющие векторы (s_1) и ( s_2) будут коллинеарными, таким образом, их координаты будут иметь следующее соотношение:
Для того, чтобы найти направляющие вектора, воспользуемся каноническими уравнениями, таким образом для прямой a вектор (s_1) будет равен .
Для прямой b найдем направляющий вектор при помощи произведения нормальных векторов плоскостей, на которых он расположен:
Таким образом, соблюдается вышеуказанное условие, значит эти прямые либо параллельны, либо совпадают. Необходимо определить каковыми именно они являются: параллельны или совпадают. Возьмем некую точку (K) с координатами (1;2;-1), находящуюся на прямой a, и подставим ее координаты в уравнение прямой (b) :
1-2+1+1=0;1=0,
Равенство не выполняется, таким образом, точка (K) не расположена на прямой (b) , а это означает, что прямые (a) и (b) не совпадают, соответственно они параллельны.