Параллельные прямые в кубе определение

10 класс. Геометрия. Параллельные прямые в пространстве.

10 класс. Геометрия. Параллельные прямые в пространстве.

  • Оглавление
  • Занятия
  • Обсуждение
  • О курсе

Вопросы

Задай свой вопрос по этому материалу!

Поделись с друзьями

Комментарии преподавателя

Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

1. Тема и цели урока

Мы уже изучали параллельные прямые в планиметрии. Теперь нужно дать определение параллельных прямых в пространстве и доказать соответствующие теоремы.

Видео:10 класс, 4 урок, Параллельные прямые в пространствеСкачать

10 класс, 4 урок, Параллельные прямые в пространстве

2. Определение параллельных прямых в пространстве

Определение: Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются (Рис. 1.).

Обозначение параллельных прямых: a || b.

Параллельные прямые в кубе определение

Параллельные прямые в кубе определение

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

3. Теорема 1 и ее доказательство

Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.

Дано: прямая а, Параллельные прямые в кубе определение(Рис. 2.)

Доказать: существует единственная прямая b || a, Параллельные прямые в кубе определение

Параллельные прямые в кубе определение

Через прямую а и точку Параллельные прямые в кубе определение, не лежащую на ней, можно провести единственную плоскость α (Рис. 3.). В плоскости α можно провести единственную прямую b, параллельную а, проходящую через точку M (из аксиомы планиметрии о параллельных прямых). Существование такой прямой доказано.

Параллельные прямые в кубе определение

Докажем единственность такой прямой. Предположим, что существует другая прямая с, проходящая через точку M и параллельная прямой а. Пусть параллельные прямые а и с лежат в плоскости β. Тогда плоскость β проходит через точку M и прямую а. Но через точку M и прямую а проходит единственная плоскость (в силу теоремы 2). Значит, плоскости β и α совпадают. Из аксиомы параллельных прямых, следует, что прямые b и с совпадают, так как в плоскости существует единственная прямая, проходящая через данную точку и параллельная заданной прямой. Единственность доказана.

Видео:24. Определение параллельных прямыхСкачать

24. Определение параллельных прямых

4. Лемма (о двух параллельных прямых, пересекающих плоскость) и ее доказательство

Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.

Дано: а || b, Параллельные прямые в кубе определение

Доказать: Параллельные прямые в кубе определение

Параллельные прямые в кубе определение

Доказательство: (Рис. 4.)

Существует некоторая плоскость β, в которой лежат параллельные прямые а и b. Точка М принадлежит и плоскости α, и прямой а, которая лежит в плоскости β. Значит, М – общая точка плоскостей α и β. А по третьей аксиоме, существует прямая MN, по которой пересекаются эти две плоскости.

Прямая MN пересекается с прямой b.(так как в противном случае, получается, что прямые MN и b параллельные, то есть a = MN, что невозможно, так как прямая а пересекается с плоскостью α в точке М по условию). То есть точка N это точка пересечения прямой b и плоскости α.Параллельные прямые в кубе определение.

Докажем, что N — это единственная общая точка прямой b и плоскости α. Допустим, что есть другая точка, но тогда прямая bпринадлежит плоскости α (по второй аксиоме). То есть MN = b, что невозможно, так как прямые а и bпараллельны, а прямая а должна пересекаться с прямой MN. Лемма доказана.

Видео:Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

5. Теорема 2 и ее доказательство

Если две прямые параллельны третьей, то они параллельны.

Дано: Параллельные прямые в кубе определение

Доказать: Параллельные прямые в кубе определение.

Параллельные прямые в кубе определение

Доказательство: (Рис. 5.)

Выберем произвольную точку К на прямой b. Тогда существует единственная плоскость α, проходящая черезточку К и прямую а. Докажем, что прямая bлежит в плоскости α.

Предположим противное. Пусть прямая bне лежит в плоскости α. Тогда прямая bпересекает плоскость α в точке К. Так как прямые bи с параллельны, то, согласно лемме, прямая с также пересекает плоскость α. Прямые а и с также параллельны, значит, по лемме, прямая а также пересекает плоскость α, но это невозможно, так как прямая а лежит в плоскости α. Получили противоречие. То есть, предположение было неверным, а значит, прямая bлежит в плоскости α.

Докажем, что прямые а и b не пересекаются. Предположим противное. Пусть прямые а и bпересекаются в некоторой точке М. Но тогда получается, что через точку М проходят две прямые а и b, параллельные прямой с, что невозможно в силу теоремы 1. Получили противоречие. Значит, прямые а и b не пересекаются.

Мы доказали, что прямые а и b не пересекаются и что существует плоскость α, в которой лежат прямые а и b. Значит, прямые а и bпараллельны (по определению), что и требовалось доказать.

Видео:Параллельность прямых. Практическая часть. 10 класс.Скачать

Параллельность прямых. Практическая часть.  10 класс.

6. Итоги урока

Итак, мы дали определение параллельных прямых и доказали теорему о параллельных прямых в пространстве. Также мы доказали важную лемму о пересечении параллельными прямыми плоскости и с помощью этой леммы доказали теорему: если две прямые параллельны третьей, то они параллельны. Эта теория будет использоваться дальше и для доказательства других теорем, и для решения задач.

Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Куб — свойства, виды и формулы

Среди многогранников куб – это один из наиболее известных объектов, знакомых с далёкого детства. Более подробно эта тема изучается на уроках геометрии в старших классах, когда от фигур на плоскости переходят к телам в пространстве.

Кубу можно дать определение различными способами, каждый из которых только подчеркнёт тот или иной класс тел в пространстве, выделит основные признаки и особенности:

многогранник, у которого все рёбра равны, а грани попарно перпендикулярны;

прямая призма, все грани которой есть квадраты;

прямоугольный параллелепипед, все рёбра которого равны.

Всеми этими и многими другими подобными формулировками геометрия позволяет описывать одну и ту же фигуру в пространстве.

Видео:Параллельность прямых. 10 класс.Скачать

Параллельность прямых. 10 класс.

Элементы куба

Основными элементами многогранника считаются грани, рёбра, вершины.

Грань

Плоскости, образующие поверхность куба, называются гранями. Другое название – стороны.

Параллельные прямые в кубе определение

Интересно, сколько граней у куба и каковы их особенности. Всего граней шесть. Две из них, параллельные друг другу, считаются основаниями, остальные – боковыми.

Грани куба попарно перпендикулярны, являются квадратами, равны между собой.

Ребро

Линии пересечения сторон называются рёбрами.

Параллельные прямые в кубе определение

Не каждый школьник может ответить, сколько рёбер у куба. Их двенадцать. Они имеют одинаковые длины. Те из них, что обладают общим концом, расположены под прямым углом по отношению к любому из двух остальных.

Рёбра могут пересекаться в вершине, быть параллельными. Не лежащие в одной грани ребра, являются скрещивающимися.

Вершина

Точки пересечения рёбер называются вершинами. Их число равно восьми.

Центр грани

Отрезок, соединяющий две вершины, не являющийся ребром, называется диагональю.

Параллельные прямые в кубе определение

Пересечение диагоналей грани считается центром грани – точкой, равноудалённой от всех вершин и сторон квадрата. Это есть центр симметрии грани.

Центр куба

Пересечение диагоналей куба является его центром – точкой, равноудалённой от всех вершин, рёбер и сторон многогранника.

Параллельные прямые в кубе определение

Это есть центр симметрии куба.

Ось куба

Рассматриваемый многогранник имеет несколько осей ортогональной (под прямым углом) симметрии. К ним относятся: диагонали куба и прямые, проходящие через его центр параллельно рёбрам.

Диагональ куба

Отрезок, соединяющий две вершины, не принадлежащие одной стороне, называется диагональю рассматриваемого многогранника.

Параллельные прямые в кубе определение

Учитывая, что ребра куба имеют равные измерения a, можно найти длину диагонали:

Параллельные прямые в кубе определение

Формула доказывается с помощью дважды применённой теоремы Пифагора.

Диагональ куба — одна из осей симметрии.

Все диагонали куба равны между собой и точкой пересечения делятся пополам.

Диагональ грани куба

Длина диагонали грани в √2 раз больше ребра, то есть:

Параллельные прямые в кубе определение

Эта формула доказывается также с помощью теоремы Пифагора.

Видео:Взаимное расположение прямых в пространстве. 10 класс.Скачать

Взаимное расположение прямых в пространстве. 10 класс.

Объем куба

Как для любого параллелепипеда, объём куба равен произведению всех трёх измерений, которые в данном случае равны:

Параллельные прямые в кубе определение

Видео:7 класс, 24 урок, Определение параллельных прямыхСкачать

7 класс, 24 урок, Определение параллельных прямых

Периметр куба

Сумма длин всех рёбер равна:

Параллельные прямые в кубе определение

Видео:Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.

Площадь поверхности

Сумма площадей всех граней называется площадью поверхности куба. Она равна:

Параллельные прямые в кубе определение

Видео:10 класс, 7 урок, Скрещивающиеся прямыеСкачать

10 класс, 7 урок, Скрещивающиеся прямые

Сфера, вписанная в куб

Такая сфера имеет центр, совпадающий с центром куба.

Параллельные прямые в кубе определение

Радиус равен половине ребра:

Параллельные прямые в кубе определение

Видео:Определение параллельных прямых | Геометрия 7-9 класс #25 | ИнфоурокСкачать

Определение параллельных прямых | Геометрия 7-9 класс #25 | Инфоурок

Сфера, описанная вокруг куба

Как для вписанной сферы, центр совпадает с точкой пересечения диагоналей, радиус равен половине диагонали:

Параллельные прямые в кубе определение

Параллельные прямые в кубе определение

Видео:Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

Координаты вершин куба

В зависимости от расположения фигуры в системе координат, можно по-разному рассчитывать координаты вершин.

Параллельные прямые в кубе определение

Наиболее часто используют следующий способ. Одна из вершин совпадает с началом координат, рёбра параллельны осям координат или совпадают с ними, координаты единичного куба в этом случае будут равны:

Параллельные прямые в кубе определение

Такое расположение удобно для введения четырёхмерного пространства (вершины задаются всеми возможными бинарными наборами длины 4).

Видео:Параллельные прямые. 6 класс.Скачать

Параллельные прямые. 6 класс.

Свойства куба

Плоскость, рассекающая куб на две части, есть сечение. Его форма выглядит как выпуклый многоугольник.

Параллельные прямые в кубе определение

Построение сечений необходимо для решения многих задач. Как правило, используется метод следов или условие параллельности прямых и плоскостей.

у куба все грани равны, являются квадратами;

у куба все рёбра равны;

один центр и несколько осей симметрии.

Видео:Скрещивающиеся прямыеСкачать

Скрещивающиеся прямые

Определение параллельных прямых в пространстве

Видео:10 класс, 6 урок, Параллельность прямой и плоскостиСкачать

10 класс, 6 урок, Параллельность прямой и плоскости

Понятие о параллельных прямых

Прямые (a) и (b) являются параллельными в трехмерном пространстве только в том случае, если они находятся в одной плоскости и не пересекаются.

Если рассмотреть примеры, то параллельные прямые мы можем наблюдать как противоположные края у прямоугольного или квадратного стола, железнодорожные рельсы и шпалы, провода линий электропередач, линии в тетради в полоску и прочее. Таких примеров из реального мира можно привести очень много.

Другими вариантами прямых, расположенных в 3D-пространстве, есть их скрещивание и пересечение. Пересекающимися есть прямые, имеющие общую точку, она же и есть точкой пересечения. Скрещивающимися есть прямые, расположенные в разных плоскостях и не параллельные между собой.

Есть ряд теорем, описывающих поведение параллельных прямых в пространстве. Рассмотрим их подробнее.

Видео:Параллельные прямые (задачи).Скачать

Параллельные прямые (задачи).

Теоремы о параллельности двух прямых

  1. если две прямые в пространстве перпендикулярные к одной плоскости, то они параллельные между собой;
  2. через точку в пространстве, что не расположена на заданной прямой, возможно провести лишь одну прямую, параллельную заданной.

Доказательство теоремы : Через прямую a и точку (M) , не находящуюся на данной прямой, проведем плоскость ∝. Эта плоскость определяется заданной прямой a и точкой (M) , то есть она однозначно определена.

Параллельные прямые в кубе определение

Для доказательства этой теоремы применим евклидовую аксиому из планиметрии про параллельные прямые.
Таким образом, через точку (M) возможно проложить лишь одну прямую, параллельную прямой (a) , и ее существование доказано. Назовем эту прямую (b) .
Два отрезка будут параллельными при их расположении на параллельных прямых.

Видео:Угол между прямыми в пространстве. Практическая часть. 10 класс.Скачать

Угол между прямыми в пространстве. Практическая часть. 10 класс.

Свойства параллельных прямых в пространстве

Некоторые свойства пересекаются с вышеизложенными теоремами, но все же рассмотрим их все:

  1. имея две параллельных прямых, одна из которых параллельная третьей прямой, можно утверждать, что вторая тоже будет параллельна третьей;
  2. если из двух параллельных прямых одна пересекает некую плоскость, то и вторая так же будет ее пересекать. Это свойство является леммой про две параллельные прямые в пространстве, ее применяют при обоснованиях различных геометрических теорем;
  3. при помощи двух параллельных прямых можно изобразить однозначно заданную плоскость;
  4. через любую точку, находящуюся в 3D-пространстве и не расположенную на заданной прямой, возможно провести лишь одну прямую, что параллельна заданной.

Рассмотрим подробнее лемму про параллельные прямые и докажем ее. К примеру, некая прямая (b) пересекает плоскость (∝) в точке (M) , что расположена на заданной плоскости. Параллельные прямые a и образуют некую плоскость (β) . Таким образом, если точка (M) общая для плоскостей (∝) и (β) , то эти плоскости пересекаются, линию пересечения обозначим c, на ней расположена точка (M) .
Все прямые (a) , (b) и (c) расположены в плоскости (β) .

Не нашли что искали?

Просто напиши и мы поможем

В соответствии с аксиомой планиметрии, при пересечении одной из параллельных прямых третьей прямой, вторая так же будет ее пересекать.

В нашем варианте прямая a пересекает прямую c в точке (K) .

Параллельные прямые в кубе определение

Точка (K) расположена одновременно на прямой a и на плоскости (∝) , значит она есть общей для них. Таким образом, прямая a пересекает плоскость (∝) .

Видео:10 класс, 5 урок, Параллельность трех прямыхСкачать

10 класс, 5 урок, Параллельность трех прямых

Пример задачи о параллельных прямых

Заданы прямые (a) и (b) , описывающиеся уравнениями. Определить, параллельны ли заданные прямые.
(a: == ) ;

Параллельные прямые в кубе определение

При совпадении прямых или если они параллельны их направляющие векторы (s_1) и ( s_2) будут коллинеарными, таким образом, их координаты будут иметь следующее соотношение:

Для того, чтобы найти направляющие вектора, воспользуемся каноническими уравнениями, таким образом для прямой a вектор (s_1) будет равен .

Для прямой b найдем направляющий вектор при помощи произведения нормальных векторов плоскостей, на которых он расположен:

Параллельные прямые в кубе определение

Таким образом, соблюдается вышеуказанное условие, значит эти прямые либо параллельны, либо совпадают. Необходимо определить каковыми именно они являются: параллельны или совпадают. Возьмем некую точку (K) с координатами (1;2;-1), находящуюся на прямой a, и подставим ее координаты в уравнение прямой (b) :
1-2+1+1=0;1=0,

Равенство не выполняется, таким образом, точка (K) не расположена на прямой (b) , а это означает, что прямые (a) и (b) не совпадают, соответственно они параллельны.

Поделиться или сохранить к себе: