Параллельные и скрещивающиеся прямые на кубе

Геометрия. 10 класс
Конспект урока

Геометрия, 10 класс

Урок №5. Взаимное расположение прямых в пространстве

Перечень вопросов, рассматриваемых в теме

  1. признаки скрещивающихся прямых;
  2. определение углов с сонаправленными сторонами;
  3. доказательство теоремы о плоскости, проходящей через одну из скрещивающихся прямых;
  4. доказательство теоремы о равенстве углов с сонаправленными сторонами.

Глоссарий по теме

Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости.

Два отрезка называются параллельными, если они лежат на паралельных прямых.

  1. Учебник Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. Геометрия 10-11 кл.– М.: Просвещение, 2014.
  1. Зив Б.Г. Дидактические материалы Геометрия 10 кл.– М.: Просвещение, 2014.
  2. Глазков Ю.А., Юдина И.И., Бутузов В.Ф. Рабочая тетрадь Геометрия 10 кл.-М.: Просвещение, 2013.

Открытый электронный ресурс:

Теоретический материал для самостоятельного изучения

Мы уже знаем, что прямы в пространстве могут располагаться параллельно или пересекаться. Существует еще один вид- скрещивающиеся прямые. С ним мы мимолетно познакомились на предыдущем уроке. А сегодня нам предстоит разобраться с этой темой более подробно.

Определение. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости. (рис. 1)

Параллельные и скрещивающиеся прямые на кубе

Рисунок 1 – скрещивающиеся прямые

На прошлом уроке в качестве наглядного примера нами был приведен куб.

Сегодня предлагаем вам обратить внимание на окружающую вас обстановку и найти в ней скрещивающиеся прямые.

Примеры скрещивающихся прямых вокруг нас:

Одна дорога проходит по эстакаде, а другая под эстакадой

Параллельные и скрещивающиеся прямые на кубе

Параллельные и скрещивающиеся прямые на кубе

Горизонтальные линии крыши и вертикальные линии стен

Параллельные и скрещивающиеся прямые на кубе

Разберем и докажем теорему, которая выражает признак скрещивающихся прямых.

Теорема. Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся (не лежат в одной плоскости).

Доказательство.
Рассмотрим прямую AB лежащую в плоскости и прямую CD, которая пересекает плоскoсть в точке D, не лежащей на прямой AB (рис. 2).

  1. Допустим, что прямые AB и CD всё-таки лежат в одной плоскости.
    2. Значит эта плоскость идёт через прямую AB и точку D, то есть она совпадает с плоскостью α.
    3. Это противоречит условиям теоремы, что прямая CD не находится в плоскости α, а пересекает её.
    Теорема доказана.

Параллельные и скрещивающиеся прямые на кубе

Рисунок 2 – скрещивающиеся прямые АВ и СD

Итак, возможны три случая расположения прямых в пространстве:

Параллельные и скрещивающиеся прямые на кубе

Параллельные и скрещивающиеся прямые на кубе

Параллельные и скрещивающиеся прямые на кубе

Разберем и докажем еще одну теорему о скрещивающихся прямых.

Теорема. Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.

Доказательство
Рассмотрим скрещивающиеся прямые AB и CD.(рис. 3)

1. Через точку D можно провести прямую DE параллельную AB.
2. Через пересекающиеся прямые CD и DE можно провести плоскость α
3. Так как прямая АB не лежит в этой плоскости и параллельна прямой DE, то она параллельна плоскости.

4. Эта плоскость единственная, так как любая другая плоскость, проходящая через CD, будет пересекаться с DE и AB, которая ей параллельна.
Теорема доказана.

Параллельные и скрещивающиеся прямые на кубе

Рисунок 3 – прямые АВ, СD, DЕ

Любая прямая, например ОО1, рассекает плоскость на две полуплоскости. Если лучи ОА и О1А1 параллельны и лежат в одной полуплоскости, то они называются сонаправленными.

Лучи О1А1 и ОА не являются сонаправленными. Они параллельны, но не лежат в одной полуплоскости. (рис. 4)

Параллельные и скрещивающиеся прямые на кубе

Рисунок 4 – сонаправленные лучи

Теорема.Если стороны двух углов соответственно сонаправленны, то такие углы равны. (рис. 5)

Доказательство:

при доказательстве ограничимся случаем, когда углы лежат в разных плоскостях.

  1. Стороны углов сонаправлены, а, значит, параллельны. Проведем через них плоскости- как показано на чертеже.

Отметим на сторонах угла O произвольные точки A и B.

На соответствующих сторонах угла O1 отложим отрезки OA1 и O₁B₁ равные соответственно ОA и OB.

2. В плоскости рассмотрим четырехугольник OAA1O1.

Так как противолежащие стороны OA и O1A1 этого четырехугольника равны и параллельны по условию, то этот четырехугольник– параллелограмм и, следовательно, равны и параллельны стороны AA1 и OO1.

3. В плоскости, аналогично можно доказать, что OBB1O1 параллелограмм, поэтому равны и параллельны стороны ВВ1 и OO1.

4. Если две отрезка AA1 и BB1 равны параллельны третьему отрезку OO1, значит, они равны и параллельны, т. е. АА1||BB1 и AA1 = BB1.

По определению четырехугольник АВВ1А1 – параллелограмм и из этого получаем АВ=А1В1.

5.Из выше построенного и доказанного АВ=А1В1, ОA =O1A1 и OB =O1B1 следует, что треугольники AOB и A1 O1 B1. равны по трем сторонам, и поэтому О= О1.

Параллельные и скрещивающиеся прямые на кубе

Рисунок 5 – равные углы с сонаправленными сторонами

Видео:10 класс, 7 урок, Скрещивающиеся прямыеСкачать

10 класс, 7 урок, Скрещивающиеся прямые

Параллельные и скрещивающиеся прямые на кубе

ПРЯМАЯ ПРИЗМА. ПОВЕРХНОСТЬ И ОБЪЁМ ПРЯМОЙ ПРИЗМЫ.

1. Построение модели куба.

На чертеже 286 изображена выкройка, или, как её принято называть, развёртка геометрического тела. Она состоит из шести равных квадратов. Если эту развёртку согнуть надлежащим образом по указанным на чертеже пунктирным линиям, то мы получим геометрическое тело, называемое кубом.

Параллельные и скрещивающиеся прямые на кубе

Под номером 287 дан чертёж куба, а под номером 288 дан рисунок куба. Куб ограничен шестью равными квадратами, которые называются его гранями.

Параллельные и скрещивающиеся прямые на кубе

На рисунке видны только три его грани, а на чертеже можно видеть все шесть граней. Любые две противоположные грани куба называются его основаниями, тогда остальные четыре его грани называются боковыми гранями; отрезки, которые получаются при пересечении граней куба, называются его рёбрами. У куба 12 рёбер. Все они равны между собой.При пересечении трёх граней куба образуются точки, которые называются его в е р ш и н а м и. У куба 8 вершин.

2. Взаимное положение рёбер и граней куба.

Противоположные грани куба параллельны. Плоскости, в которых лежат эти грани, не пересекаются, т. е. не имеют общих точек. Параллельные плоскости мы наблюдаем на многих окружающих нас предметах; например, плоскости пола и потолка в комнате параллельны.
В кубе можно наблюдать и пересекающиеся плоскости. Пересекаясь, плоскости образуют двугранные углы. Модель двугранных углов можно получить, сгибая лист картона или бумаги по прямой линии.

Двугранные углы можно получить острые, прямые и тупые. Грани куба пересекаются под прямым углом. Под прямым углом пересекаются также стены в комнате, стены и потолок, стены и пол. Плоскости, пересекающиеся под прямым углом, называются перпендикулярными. Перпендикулярность плоскостей проверяется с помощью угольника. На чертеже 289 плоскости при пересечении образуют прямой угол. На чертеже 290 и на чертеже 291 показаны плоскости, которые при пересечении не образуют прямого угла; в первом случае они пересекаются под острым углом, во втором случае — под тупым.

Параллельные и скрещивающиеся прямые на кубе

Рёбра куба, находящиеся на одной грани (черт. 287), или пересекаются под прямым углом (ЕА _|_ АВ, КС _|_ ВС и т. д.), или параллельны (ЕF || АВ, ВС || КF и т. д.).

3. Скрещивающиеся прямые.

Рёбра куба, например КС и АВ (черт. 287), не параллельны, но и не пересекутся, сколько бы их ни продолжать. Прямые, которые не параллельны и не пересекаются, называются скрещивающимися. Легко получить модели скрещивающихся прямых. Например, две иглы, из которых одна положена на стол, а другая воткнута в стол так, что не пересекает первую, представляют собой модель двух скрещивающихся прямых (черт. 292). Эти две прямые не пересекаются и не параллельны; легко убедиться, что через них нельзя провести плоскость.

Параллельные и скрещивающиеся прямые на кубе

Точно так же, если взять две дощечки, поместить их параллельно друг другу и затем на одну из них положить палочку в направлении, например, с юга на север, а на другую — в направлении с запада на восток, то эти две палочки образуют модель скрещивающихся прямых (черт. 293).

Эти две прямые тоже не пересекаются, не параллельны, и через них также нельзя провести плоскость.

Найдите модели скрещивающихся прямых на окружающих предметах, например, в классной комнате.

4. Прямая, перпендикулярная к плоскости.

Рассматривая куб (черт. 287), заметим, что ребро FВ образует прямые углы с рёбрами ВС и АВ, лежащими на нижнем основании куба. Это же ребро FВ образует прямые углы с любой прямой, проведённой в плоскости основания куба через точку В. Ребро FВ является перпендикуляром к плоскости основания куба.

Перпендикуляром к плоскости называется прямая, которая пересекает плоскость в какой-нибудь точке и перпендикулярна к любой прямой, проведённой в этой плоскости через ту же точку.

Чтобы провести перпендикуляр к плоскости, берут два чертёжных треугольника и ставят их так, чтобы два катета лежали на плоскости, как показано на чертеже 294, а другую пару катетов совмещают. Эти два катета и образуют перпендикуляр к данной плоскости.

Параллельные и скрещивающиеся прямые на кубе

На чертеже 294 прямая АВ перпендикулярна к плоскости Р.

Перпендикулярность прямой АВ к плоскости Р легко проверить: для этого надо взять ещё один чертёжный треугольник и несколько раз в различных положениях приложить его к двум первым треугольникам так, чтобы его катет всякий раз совмещался с катетом АВ. Тогда другой катет третьего треугольника всё время будет находиться в плоскости Р. Значит, можно считать проверенным, что прямая АВ образует прямые углы с любой прямой, проведённой на плоскости через её основание, т. е. является перпендикуляром к плоскости.

Таким образом, мы приходим к выводу: если прямая, пересекающая плоскость в какой-нибудь точке О, перпендикулярна к двум прямым, проведённым на плоскости через точку О, то эта прямая перпендикулярна к плоскости.

Этот вывод является признаком перпендикулярности прямой к плоскости.

Через любую произвольно взятую точку можно провести перпендикуляр к данной плоскости, но только один.

Длина перпендикуляра, опущенного из какой-нибудь точки на плоскость, называется расстоянием от этой точки до плоскости.

5. Площадь поверхности куба.

Чтобы вычислить площадь поверхности куба, достаточно вычислить площадь одной его грани и полученное число помножить на 6. Если ребро куба обозначить через а, то площадь поверхности одной его грани будет равна а 2 , а площадь всей поверхности куба (полная поверхность) составит 6а 2 .

S = 6а 2 , где S — площадь полной поверхности куба.

Площадь поверхности его оснований составит 2а 2 . Площадь поверхности боковых его граней составит 4а 2 .

1. Ребро куба равно 8 см (10 см, 12 см, 20 см). Вычислить площадь всей его поверхности; площадь оснований; площадь его боковой поверхности.

2. Площадь полной поверхности куба равна 150 кв. см (600 кв. см, 216 кв. см, 864 кв. см). Вычислить длину его ребра.

3. Площадь боковой поверхности куба равна 100 кв. см (64 кв. см, 324 кв. см, 576 кв. см). Вычислить площадь его полной поверхности.

4. Сделать из плотной бумаги модель куба, ребро которого равно 8 см.

Указание. Для того чтобы полученное геометрическое тело сохраняло свою форму, у развёртки куба необходимо сделать небольшие закраины (черт. 295). Если их подклеить, они составят каркас, который придаст необходимую жёсткость модели.

Параллельные и скрещивающиеся прямые на кубе

5. Сколько потребуется белил для окраски с обеих сторон бака (без крышки), имеющего форму куба с ребром в 80 см, если на окраску 1 кв.м требуется белил 0,25 кг?

Видео:10 класс - Геометрия - Скрещивающиеся прямыеСкачать

10 класс - Геометрия - Скрещивающиеся прямые

Взаимное расположение двух прямых в пространстве.
Признак скрещивающихся прямых.
Угол между скрещивающимися прямыми

    1. параллельно
    1. пересекаются
    1. скрещиваются
Параллельные и скрещивающиеся прямые на кубеВзаимное расположение двух прямых в пространстве
Параллельные и скрещивающиеся прямые на кубеПризнак скрещивающихся прямых
Параллельные и скрещивающиеся прямые на кубеУгол между скрещивающимися прямыми

Параллельные и скрещивающиеся прямые на кубе

Видео:7. Скрещивающиеся прямыеСкачать

7. Скрещивающиеся прямые

Взаимное расположение двух прямых в пространстве

Все возможные случаи взаимного расположения двух прямых в пространстве представлены в следующей таблице.

ФигураРисунокОпределение
Две пересекающиеся прямыеПараллельные и скрещивающиеся прямые на кубеДве прямые называют пересекающимися прямыми , если они имеют единственную общую точку.
Две параллельные прямыеПараллельные и скрещивающиеся прямые на кубеДве прямые называют параллельными прямыми , если они лежат в одной плоскости и не имеют общих точек
Две скрещивающиеся прямыеПараллельные и скрещивающиеся прямые на кубеДве прямые называют скрещивающимися прямыми , если не существует плоскости, содержащей обе прямые.
Две пересекающиеся прямые
Параллельные и скрещивающиеся прямые на кубе

Две прямые называют пересекающимися прямыми , если они имеют единственную общую точку.

Две параллельные прямыеПараллельные и скрещивающиеся прямые на кубе

Две прямые называют параллельными прямыми , если они лежат в одной плоскости и не имеют общих точек

Две скрещивающиеся прямыеПараллельные и скрещивающиеся прямые на кубе

Две прямые называют скрещивающимися прямыми , если не существует плоскости, содержащей обе прямые.

С перечисленными в предыдущей таблице случаями взаимного расположения двух прямых в пространстве близко связаны утверждения, представленные в следующей таблице.

ФигураРисунокТип утверждения и формулировка
Две различные точкиПараллельные и скрещивающиеся прямые на кубеАксиома о прямой линии, заданной двумя точками
Через две различные точки проходит одна и только одна прямая линия.
Прямая линия и точка, не лежащая на этой прямойПараллельные и скрещивающиеся прямые на кубеАксиома о параллельных прямых
Через точку, не лежащую на прямой,проходит одна и только одна прямая, параллельная этой прямой.
Две пересекающиеся прямыеПараллельные и скрещивающиеся прямые на кубеТеорема о плоскости, определяемой двумя пересекающимися прямыми
Через две пересекающиеся прямые проходит одна и только одна плоскость, содержащая обе эти прямые.
Две параллельные прямыеПараллельные и скрещивающиеся прямые на кубеТеорема о плоскости, определяемой двумя параллельными прямыми
Через две параллельные прямые проходит одна и только одна плоскость, содержащая обе эти прямые.
Две различные точки
Параллельные и скрещивающиеся прямые на кубе

Аксиома о прямой линии, заданной двумя точками
Через две различные точки проходит одна и только одна прямая линия.

Прямая линия и точка, не лежащая на этой прямойПараллельные и скрещивающиеся прямые на кубе

Аксиома о параллельных прямых
Через точку, не лежащую на прямой,проходит одна и только одна прямая, параллельная этой прямой.

Две пересекающиеся прямыеПараллельные и скрещивающиеся прямые на кубе

Теорема о плоскости, определяемой двумя пересекающимися прямыми
Через две пересекающиеся прямые проходит одна и только одна плоскость, содержащая обе эти прямые.

Две параллельные прямыеПараллельные и скрещивающиеся прямые на кубе

Теорема о плоскости, определяемой двумя параллельными прямыми
Через две параллельные прямые проходит одна и только одна плоскость, содержащая обе эти прямые.

Видео:Скрещивающиеся прямыеСкачать

Скрещивающиеся прямые

Признак скрещивающихся прямых

Признак скрещивающихся прямых . Если одна из двух прямых лежит на плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещиваются (рис.1).

Параллельные и скрещивающиеся прямые на кубе

Доказательство . Напомним, что две прямые называют скрещивающимися, если не существует плоскости, содержащей обе эти прямые, и будем доказывать признак скрещивающихся прямых методом «От противного».

Для этого предположим, что прямая a , пересекающая плоскость в точке K , и прямая b , лежащая в плоскости α (рис. 1), не являются скрещивающимися. Из этого предположения следует, что существует плоскость, содержащая обе эти прямые. Обозначим эту плоскость буквой β и докажем, что плоскость β совпадает с плоскостью α . Действительно, поскольку обе плоскости α и β проходят через прямую b и точку K , не лежащую на этой прямой, то они совпадают. Следовательно, прямая a лежит в плоскости прямая a лежит в плоскости . Мы получили противоречие с тем, что по условию прямая a пересекает плоскость прямая a пересекает плоскость , а не лежит в ней. Доказательство признака скрещивающихся прямых завершено.

Видео:10 класс, 4 урок, Параллельные прямые в пространствеСкачать

10 класс, 4 урок, Параллельные прямые в пространстве

Угол между скрещивающимися прямыми

Параллельные и скрещивающиеся прямые на кубе

Параллельные и скрещивающиеся прямые на кубе

Параллельные и скрещивающиеся прямые на кубе

На рисунке 2 изображены скрещивающиеся прямые a и b . Прямая a’ параллельна прямой a , прямая b’ параллельна прямой b. Прямые a’ и b’ пересекаются. Угол φ и является углом между скрещивающимися прямыми a и b .

Параллельные и скрещивающиеся прямые на кубе

Параллельные и скрещивающиеся прямые на кубе

Параллельные и скрещивающиеся прямые на кубе

Для того, чтобы найти угол между прямыми AB1 и BC1 , проведем в кубе диагональ боковой грани AD1 и диагональ верхнего основания D1B1 (рис. 4).

Параллельные и скрещивающиеся прямые на кубе

Параллельные и скрещивающиеся прямые на кубе

Параллельные и скрещивающиеся прямые на кубе

Замечание . Для более глубокого усвоения понятия «Скрещивающиеся прямые» рекомендуем ознакомиться с разделами нашего сайта «Свойства скрещивающихся прямых» и «Взаимное расположение прямой и плоскости в пространстве. Признак параллельности прямой и плоскости».

🎥 Видео

Угол между прямыми в пространстве. 10 класс.Скачать

Угол между прямыми в пространстве. 10 класс.

Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Взаимное расположение прямых в пространстве. 10 класс.Скачать

Взаимное расположение прямых в пространстве. 10 класс.

Стереометрия для ЕГЭ: 2 - параллельные и скрещивающиеся прямыеСкачать

Стереометрия для ЕГЭ: 2 - параллельные и скрещивающиеся прямые

Угол между прямыми в пространстве. Практическая часть. 10 класс.Скачать

Угол между прямыми в пространстве. Практическая часть. 10 класс.

Расстояние между скрещивающимися прямыми за 1 минуту. #математикапрофиль2023 #егэ2023 #школа #fypСкачать

Расстояние между скрещивающимися прямыми за 1 минуту.  #математикапрофиль2023 #егэ2023 #школа #fyp

Параллельность прямых. Практическая часть. 10 класс.Скачать

Параллельность прямых. Практическая часть.  10 класс.

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

ЕГЭ по математике - Угол между скрещивающимися прямымиСкачать

ЕГЭ по математике - Угол между скрещивающимися прямыми

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Угол между скрещивающимися прямыми в кубеСкачать

Угол между скрещивающимися прямыми в кубе

Геометрия 10 класс (Урок№5 - Взаимное расположение прямых в пространстве.)Скачать

Геометрия 10 класс (Урок№5 - Взаимное расположение прямых в пространстве.)

СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ 10 класс стереометрияСкачать

СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ 10 класс стереометрия

Стереометрия 10 класс. Часть 2 | Математика | TutorOnlineСкачать

Стереометрия 10 класс. Часть 2 | Математика | TutorOnline

Готовимся к ЕГЭ. Стереометрия. Базовые задачи. Угол между прямыми. КубСкачать

Готовимся к ЕГЭ. Стереометрия. Базовые задачи. Угол между прямыми. Куб
Поделиться или сохранить к себе: