Параллельные и антипараллельные вектора

Видео:Коллинеарные векторы.Скачать

Коллинеарные векторы.

Условие коллинеарности векторов

В статье ниже рассмотрим условия, при которых векторы считаются коллинеарными, а также разберем тему на конкретных примерах. И, прежде чем приступить к обсуждению, напомним некоторые определения.

Коллинеарные векторы – ненулевые векторы, лежащие на одной прямой или на параллельных прямых. Нулевой вектор считается коллинеарным любому другому.

Данное определение дает возможность убедиться в коллинеарности векторов в их геометрическом отображении, однако точность такого способа может иметь погрешности, например, в зависимости, от качества самого чертежа. Поэтому обратимся к алгебраическому толкованию: сформируем условие, которое будет явным признаком коллинеарности.

Согласно схемам операций над векторами умножение вектора на некоторое заданное число приводит к соответствующему сжатию или растяжению вектора при сохранении или смене направления. Тогда вектор b → = λ · a → коллинеарен вектору a → , где λ – некоторое действительное число. Справедливым будет и обратное утверждение: если вектор b → коллинеарен вектору a → , его можно представить в виде λ · a → . Это является необходимым и достаточным условием коллинеарности двух ненулевых векторов.

Для коллинеарности двух векторов необходимо и достаточно, чтобы они были связаны равенствами: b → = λ · a → или a → = μ · b → , μ ∈ R

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Координатная форма условия коллинеарности векторов

Исходные данные: вектор a → задан в некоторой прямоугольной системе координат на плоскости и имеет координаты ( a x , a y ) , тогда, согласно полученному выше условию, вектор b → = λ · a → имеет координаты ( λ · a x , λ · a y ) .

По аналогии: если вектор a → задан в трехмерном пространстве, то он будет представлен в виде координат a = ( a x , a y , a z ) , а вектор b → = λ · a → имеет координаты ( λ · a x , λ · a y , λ · a z ) . Из полученных утверждений следуют условия коллинеарности двух векторов в координатном толковании.

  1. ​​​Для коллинеарности двух ненулевых векторов на плоскости необходимо и достаточно, чтобы их координаты были связаны соотношениями: b x = λ · a x b y = λ · a y или a x = μ · b x a y = μ · b y
  2. Для коллинеарности двух ненулевых векторов в пространстве необходимо и достаточно, чтобы их координаты были связаны соотношениями: b x = λ · a x b y = λ · a y b z = λ · a z или a x = μ · b x a y = μ · b y a z = μ · b z

Мы можем также получить еще одно условие коллинеарности векторов, опираясь на понятие их произведения.

Если ненулевые векторы a → = ( a x , a y , a z ) и b → = ( b x , b y , b z ) коллинеарны, то согласно векторному определению произведения a → × b → = 0 → . И это также соответствует равенству: i → j → k → a x a y a z b x b y b z = 0 → , что, в свою очередь, возможно только тогда, когда заданные векторы связаны соотношениями b → = λ · a → и a → = μ · b → , где μ — произвольное действительное число (на основании теоремы о ранге матрицы), что указывает на факт коллинеарности векторов.

Два ненулевых вектора коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору.

Рассмотрим применение условия коллинеарности на конкретных примерах.

Исходные данные: векторы a → = ( 3 — 2 2 , 1 ) и b → = ( 1 2 + 1 , 2 + 1 ) . Необходимо определить, коллинеарны ли они.

Решение

Выполним задачу, опираясь на условие коллинеарности векторов на плоскости в координатах: b x = λ · a x b y = λ · a y Подставив заданные значения координат, получим: b x = λ · a x ⇔ 1 2 + 1 = λ · ( 3 — 2 2 ) ⇒ λ = 1 ( 2 + 1 ) · ( 3 — 2 2 ) = 1 3 2 — 4 + 3 — 2 2 = 1 2 — 1 b y = λ · a y ⇔ 2 + 1 = 1 2 — 1 · 1 ⇔ ( 2 + 1 ) · ( 2 — 1 ) = 1 ⇔ 1 ≡ 1

Т.е. b → = 1 2 — 1 · a → , следовательно, заданные векторы коллинеарны.

Ответ: заданные векторы коллинеарны.

Исходные данные: векторы a → = ( 1 , 0 , — 2 ) и b → = ( — 3 , 0 , 6 ) . Необходимо убедиться в их коллинеарности.

Решение

Т.к. b x = λ · a x b y = λ · a y b z = λ · a z ⇔ — 3 = — 3 · 1 0 = — 3 · 0 6 = — 3 · ( — 2 ) , то верным будет равенство: b → = — 3 · a → , что является необходимым и достаточным условием коллинеарности. Таким образом, заданные векторы коллинеарны.

Найдем также векторное произведение заданных векторов и убедимся, что оно равно нулевому вектору: a → × b → = i → j → k → a x a y a z b x b y b z = i → j → k → 1 0 — 2 — 3 0 6 = i → · 0 · 6 + j → · ( — 2 ) · ( — 3 ) + k → · 1 · 0 — k → · 0 · ( — 3 ) — j → · 1 · 6 — i → · ( — 2 ) · 0 = 0 → Ответ: заданные векторы коллинеарны.

Исходные данные: векторы a → = ( 2 , 7 ) и b → = ( p , 3 ) . Необходимо определить, при каком значении p заданные векторы будут коллинеарны.

Решение

Согласно выведенному выше условию, векторы коллинеарны, если

b → = λ · a → ⇔ b x = λ · a x b y = λ · a y ⇔ p = λ · 2 3 = λ · 7

тогда λ = 3 7 , а p = λ · 2 ⇔ p = 6 7 .

Ответ: при p = 6 7 заданные векторы коллинеарны.

Также распространены задачи на нахождения вектора, коллинеарного заданному. Решаются они без затруднений, основываясь на условии коллинеарности: : достаточным будет взять произвольное действительное число λ и определить вектор, коллинеарный данному.

Исходные данные: вектор a → = ( 2 , — 6 ) . Необходимо найти любой ненулевой вектор, коллинеарный заданному.

Решение

Ответом может послужить, например, 1 2 · a → = ( 1 , — 3 ) или вектор 3 · a → = ( 6 , — 18 ) .

Ответ: вектор, коллинеарный заданному имеет координаты ( 1 , — 3 ) .

Исходные данные: вектор a → = ( 3 , 4 , — 5 ) . Необходимо определить координаты вектора единичной длины, коллинеарного заданному.

Решение

Вычислим длину заданного вектора по его координатам: a → = a x 2 + b x 2 + c x 2 = 3 2 + 4 2 + ( — 5 ) 2 = 5 2 Разделим каждую из заданных координат на полученную длину и получим единичный вектор, коллинеарный данному: 1 a → · a → = ( 3 5 2 , 4 5 2 , — 1 2 )

Видео:Понятие вектора. Коллинеарные вектора. 9 класс.Скачать

Понятие вектора. Коллинеарные вектора. 9 класс.

Глава 15. Понятие вектора. Линейные операции над векторами. Координаты вектора

Величины, характеризующиеся только числовым значением (масса, объем, плотность, стоимость и другие), называются Скалярными.

Величины, характеризующиеся и числовым значением, и направлением (сила, скорость, момент силы и другие), называются Векторными.

Вектор – это Направленный отрезок, на котором определены операции сравнения сложения и умножения на вещественное число. Векторы обозначаются так: A, Параллельные и антипараллельные вектора, Параллельные и антипараллельные вектора, Параллельные и антипараллельные вектора.
(Рис. 2.1.1)

Параллельные и антипараллельные вектора

Параллельные и антипараллельные вектора

Параллельные и антипараллельные вектора

Модуль (Длина) вектора обозначается так: |A|, b, Параллельные и антипараллельные вектора.

Векторы, лежащие на одной или на параллельных прямых, называются Коллинеарными.

Векторы Равны тогда и только тогда, когда они:

2. одинаково направлены;

3. имеют равные длины.

Параллельные и антипараллельные вектора

Вектор можно произвольно переносить параллельно самому себе, помещая его начало в любую точку пространства.

Вектор, длина которого равна нулю, называется Нулевым. Нулевой вектор не имеет определенного направления.

Векторы, лежащие в одной или в параллельных плоскостях, называются Компланарными. (Рис. 2.1.2–а и 2.1.2–б).

Линейные операции над векторами

1. Сложение векторов.

Суммой двух векторов A и B называется вектор C = a + b, начало которого совпадает с началом вектора A, а конец – с концом вектора B при условии, что начало вектора B совпадает с концом вектора A (рис. 3–а). Это правило сложения векторов называется еще “Правилом треугольника”.

Параллельные и антипараллельные вектора

Параллельные и антипараллельные вектора

Вектор C = a + b можно построить также по “Правилу параллелограмма”: в точке O совместим начала векторов A И B и на этих векторах, как на сторонах, построим параллелограмм. Вектор, совпадающий с диагональю этого параллелограмма с началом в точке O, и является вектором C (рис. 2.1.3–а).

Сумма векторов обладает как Переместительным свойством (рис. 2.1.3–б):

Так и Сочетательным (рис. 2.1.4):

(a + b) + c = a + (b + c).

Параллельные и антипараллельные вектора

Подобно построению суммы трех векторов можно построить сумму любого конечного числа векторов.

2. Умножение вектора на число

Произведением вектора A на число L называется вектор C = LA, удовлетворяющий следующим условиям:

1. Параллельные и антипараллельные вектора;

2. Параллельные и антипараллельные вектораA коллинеарен вектору A;

Видео:Сложение коллинеарных векторовСкачать

Сложение коллинеарных векторов

Техническая механика

Видео:ПРОСТОЙ СПОСОБ, как запомнить Векторы за 10 минут! (вы будете в шоке)Скачать

ПРОСТОЙ СПОСОБ, как запомнить Векторы за 10 минут! (вы будете в шоке)

Теоретическая механика

Плоская система параллельных сил

Сложение двух параллельных сил, направленных в одну сторону

Система сил, линии действия которых лежат в одной плоскости и не пересекаются, называются системой параллельных сил.
Параллельные и антипараллельные вектораПри этом силы, линии действия которых параллельны, но векторы направлены в противоположные стороны, называют антипараллельными.

Из физики известно, что две параллельные силы, направленные в одну сторону, эквивалентны равнодействующей, которая равна сумме этих сил, параллельна им и направлена в ту же сторону; линия действия равнодействующей делит отрезок, соединяющий точки приложения данных сил на части, обратно пропорциональные модулям этих сил:

Применяя производную пропорцию, можно записать:

Разложение данной силы на две параллельные составляющие производится с помощью формул сложения двух параллельных сил.
Разложение силы на две параллельные составляющие есть задача неопределенная, имеющая бесчисленное множество решений. Для того чтобы задача имела определенное решение, необходимо иметь два дополнительных условия, например модуль одной составляющей и длину одного плеча, длины двух плеч и т. п.

Сложение двух неравных антипараллельных сил

Рассмотрим случай сложения двух не равных по модулю антипараллельных сил (случай, когда такие силы равны по модулю особый, мы его рассмотрим на следующей странице) .

Теорема

Две неравные антипараллельные силы эквивалентны равнодействующей, которая равна разности данных сил, параллельна им и направлена в сторону большей силы; линия действия равнодействующей делит отрезок, соединяющий точки приложения сил на части, обратно пропорциональные величине этих сил.

Рассмотрим две антипараллельные силы F1 и F2 , причем F1 > F2 .
Параллельные и антипараллельные вектораРазложим силу F1 на две параллельные составляющие FΣ и F2‘ так, чтобы составляющая F2‘ была приложена в точке В и равнялась по модулю силе F2 . Тогда на основании теоремы о сложении двух параллельных сил, направленных в одну сторону, получим:

Из этих равенств найдем модуль составляющей FΣ и расстояние АС до точки ее приложения (известно, что F2‘ = F2 ). Данная система сил ( F1 и F2 ) заменена системой трех сил:

Отбросив на основании аксиомы IV две взаимно уравновешивающие силы F2 и F2‘ , получим, что данная система эквивалентна одной силе, т. е. равнодействующей FΣ . Модуль и точка приложения равнодействующей определяются по формулам:

На основании можно сделать вывод, что равнодействующая двух параллельных сил равна их алгебраической сумме.
Если на тело действует n параллельных сил, то производя последовательное сложение сначала двух сил, затем их равнодействующей с третьей силой и т. д., найдем модуль и линию действия равнодействующей всей системы параллельных сил.
Очевидно, что равнодействующая системы параллельных сил определится в результате, как алгебраическая сумма всех сил данной системы.
Таким образом, равнодействующая системы параллельных сил равна их алгебраической сумме:

🔥 Видео

Геометрия - 9 класс (Урок№1 - Понятие вектора. Равенство векторов)Скачать

Геометрия - 9 класс (Урок№1 - Понятие вектора. Равенство векторов)

Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?Скачать

Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?

Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | УмскулСкачать

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | Умскул

Выразить векторы. Разложить векторы. Задачи по рисункам. ГеометрияСкачать

Выразить векторы. Разложить векторы. Задачи по рисункам. Геометрия

Геометрия. 10 класс. Коллинеарность и компланарность векторов /13.04.2021/Скачать

Геометрия. 10 класс. Коллинеарность и компланарность векторов /13.04.2021/

§15 Коллинеарность векторовСкачать

§15 Коллинеарность векторов

Вычитание векторов. 9 класс.Скачать

Вычитание векторов. 9 класс.

Единичный векторСкачать

Единичный вектор

Одинаково направленные и разно направленные векторы.Скачать

Одинаково направленные и разно направленные векторы.

СКАЛЯРНОЕ УМНОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #формулы #профильныйегэ #векторыСкачать

СКАЛЯРНОЕ УМНОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #формулы #профильныйегэ #векторы

Вектор. Определение. Коллинеарные векторы. Равные векторы.Скачать

Вектор. Определение. Коллинеарные векторы. Равные векторы.

Координаты вектора в пространстве. 11 класс.Скачать

Координаты вектора  в пространстве. 11 класс.

Физика | Ликбез по векторамСкачать

Физика | Ликбез по векторам

ГЕОМЕТРИЯ 11 класс: Компланарные векторыСкачать

ГЕОМЕТРИЯ 11  класс: Компланарные векторы
Поделиться или сохранить к себе: