Основное свойство параллельных прямых

Параллельность прямых

Основное свойство параллельных прямых

О чем эта статья:

10 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:7 класс, 28 урок, Аксиома параллельных прямыхСкачать

7 класс, 28 урок, Аксиома параллельных прямых

Определение параллельности прямых

Начнем с главного — определимся, какие прямые параллельны согласно евклидовой геометрии. Мы недаром упомянули Евклида, ведь именно в его трудах, написанных за 300 лет до н. э., до нас дошли первые упоминания о параллельности.

Параллельными называются прямые в одной плоскости, не имеющие точек пересечения, даже если их продолжать бесконечно долго. Обозначаются они следующим образом: a II b.

Казалось бы, здесь все просто, но со времен Евклида над определением параллельных прямых и признаками параллельности прямых бились лучшие умы. Особый интерес вызывал 5-й постулат древнегреческого математика: через точку, которая не относится к прямой, в той же плоскости можно провести только одну прямую, параллельную первой. В XIX веке российский математик Н. Лобачевский смог опровергнуть постулат и указать на условия, при которых возможно провести как минимум 2 параллельные прямые через одну точку.

Впрочем, поскольку школьная программа ограничена евклидовой геометрией, вышеуказанное утверждение мы принимаем как аксиому.

На плоскости через любую точку, не принадлежащую некой прямой, можно провести единственную прямую, которая была бы ей параллельна.

Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Видео:Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)

Свойства и признаки параллельных прямых

Есть ряд признаков, по которым можно определить, что одна прямая параллельна другой. К счастью, свойства и признаки параллельности прямых тесно связаны, поэтому не придется запоминать много информации.

Начнем со свойств. Для этого проведем третью прямую, пересекающую параллельные прямые — она будет называться секущей. В результате у нас образуется 8 углов.

Если секущая проходит через две параллельные прямые, то:

    два внутренних односторонних угла образуют в сумме 180°:

∠4 + ∠6 = 180°; ∠3 + ∠5 = 180°.

Основное свойство параллельных прямых
два внутренних накрест лежащих угла равны между собой:

Основное свойство параллельных прямых
два соответственных угла равны между собой:

∠1 = ∠5, ∠3 = ∠7, ∠4 = ∠8, ∠2 = ∠6.

Основное свойство параллельных прямых

Если секущая образует перпендикуляр с одной из параллельных прямых, то она будет перпендикулярна и другой.

Основное свойство параллельных прямых

Вышеуказанные свойства являются одновременно признаками, по которым мы можем сделать вывод о параллельности прямых. Причем достаточно установить и доказать лишь один признак — остальные будут к нему прилагаться.

А сейчас посмотрим, как все это помогает решать задачи и практиковаться в определении параллельности двух прямых.

Задача 1

Прямые MN и KP пересекают две другие прямые, образуя несколько углов. Известно, что ∠1 = 73°; ∠3 = 92°; ∠2 = 73°. Требуется найти величину ∠4.

Решение

Поскольку ∠1 и ∠2 являются соответственными, их равенство говорит о том, что MN II KP. Следовательно, ∠3 = ∠MPK = 92°.

Согласно другому свойству параллельных прямых ∠4 + ∠MPK = 180°.

Основное свойство параллельных прямых

Задача 2

Две параллельные прямые а и b удалены друг от друга на расстояние 27 см. Секущая к этим прямым образует с одной из них угол в 150°. Требуется найти величину отрезка секущей, расположенного между а и b.

Решение

Поскольку а II b, значит ∠MKD + ∠KDN = 180°.

Соответственно, ∠MKD = 180° — ∠KDN = 180° — 150° = 30°.

Теперь рассмотрим треугольник KDM. Мы знаем, что отрезок DM представляет собой расстояние между прямыми а и b, а значит, DM ┴ b и наш треугольник является прямоугольным.

Поскольку катет, противолежащий углу в 30°, равен ½ гипотенузы, DM = 1/2DK.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Основное свойство параллельных прямых

Основное свойство параллельных прямых

Параллельные прямые — две прямые, которые лежат в одной плоскости и не пересекаются, а || b.

Слово «параллельный» от греческого «parallelos» — идущий рядом. Знак параллельности || впервые встречается в трудах У. Оутреда (1677 г).

Аксиома параллельности:
Через точку, не лежащую на данной прямой, на плоскости можно провести только одну прямую , параллельную данной прямой.

Выделенная синим цветом часть этого утверждения — знаменитый пятый постулат Евклида. Отказ от пятого постулата ведёт к геометрии Лобачевского. В геометрии Лобачевского через точку, лежащую за прямой, проходит множество прямых, которые не пересекают данную прямую.

Иногда Аксиому параллельных прямых принимают в качестве одного из свойств параллельных прямых, но вместе с тем на ее справедливости строят другие геометрические доказательства.

Основное свойство параллельных прямых

Примечание. В планиметрии две различные прямые либо пересекаются, либо параллельны. В стереометрии возможен третий вариант — прямые могут не пересекаться, так как не лежат в одной плоскости. Такие прямые называются скрещивающимися.

Свойства и признаки параллельных прямых

Основное свойство параллельных прямыхСвойства и признаки параллельных прямых:

  • Две прямые, параллельные третьей, параллельны.
  • Через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.
  • Если прямая пересекает одну из параллельных прямых, то она пересекает и другую.
  • Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.
  • Если две параллельные прямые пересечены секущей, то:
    – сумма внутренних односторонних углов равна 180°,
    – накрест лежащие углы равны,
    – соответственные углы равны,

Основное свойство параллельных прямых

Теорема Фалеса:
Если на одной из двух прямых отложено несколько равных отрезков и через их концы проведены параллельные прямые, не пересекающие другую прямую, то и на ней отложатся равные отрезки.

Это конспект по теме «Параллельные прямые». Выберите дальнейшие действия:

Видео:Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

Признаки и свойства параллельных прямых

Видео:7 класс, 25 урок, Признаки параллельности двух прямыхСкачать

7 класс, 25 урок, Признаки параллельности двух прямых

Признаки параллельных прямых

1. Если две прямые параллельны третьей прямой, то они являются параллельными:

Основное свойство параллельных прямых

2. Если две прямые перпендикулярны третьей прямой, то они параллельны:

Основное свойство параллельных прямых

Остальные признаки параллельности прямых основаны на углах, образующихся при пересечении двух прямых третьей.

3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны:

Основное свойство параллельных прямых

Если ∠1 + ∠2 = 180°, то a || b.

4. Если соответственные углы равны, то прямые параллельны:

Основное свойство параллельных прямых

5. Если внутренние накрест лежащие углы равны, то прямые параллельны:

Основное свойство параллельных прямых

Видео:МЕРЗЛЯК 7 ГЕОМЕТРИЯ. СВОЙСТВА ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. ПАРАГРАФ-15Скачать

МЕРЗЛЯК 7 ГЕОМЕТРИЯ. СВОЙСТВА ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. ПАРАГРАФ-15

Свойства параллельных прямых

Утверждения, обратные признакам параллельности прямых, являются их свойствами. Они основаны на свойствах углов, образованных пересечением двух параллельных прямых третьей прямой.

1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°:

Основное свойство параллельных прямых

Если a || b, то ∠1 + ∠2 = 180°.

2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны:

Основное свойство параллельных прямых

3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны:

Основное свойство параллельных прямых

Следующее свойство является частным случаем для каждого предыдущего:

4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой:

Основное свойство параллельных прямых

Пятое свойство — это аксиома параллельности прямых:

5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой:

📺 Видео

Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

СВОЙСТВА ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. §15 геометрия 7 классСкачать

СВОЙСТВА ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. §15 геометрия 7 класс

Свойства параллельных прямых - 7 класс геометрияСкачать

Свойства параллельных прямых - 7 класс геометрия

Геометрия 7 класс (Урок№20 - Аксиома параллельных прямых.)Скачать

Геометрия 7 класс (Урок№20 - Аксиома параллельных прямых.)

Параллельные прямые. 6 класс.Скачать

Параллельные прямые. 6 класс.

Урок 15 Свойства параллельных прямых (7 класс)Скачать

Урок 15  Свойства параллельных прямых (7 класс)

ГЕОМЕТРИЯ 7 класс: Аксиома параллельных прямых. Свойства параллельных прямых.Скачать

ГЕОМЕТРИЯ 7 класс: Аксиома параллельных прямых. Свойства параллельных прямых.

Параллельные прямые (задачи).Скачать

Параллельные прямые (задачи).

Параллельность прямых. 10 класс.Скачать

Параллельность прямых. 10 класс.

Признаки и свойства параллельных прямых.Скачать

Признаки и свойства параллельных прямых.

Параллельные прямые. Свойства параллельных прямых.Скачать

Параллельные прямые. Свойства параллельных прямых.

Основное свойство параллельности прямых.Скачать

Основное свойство параллельности прямых.

Параллельные прямые — Признак Параллельности Прямых и Свойства УгловСкачать

Параллельные прямые — Признак Параллельности Прямых и Свойства Углов

7 класс — Свойства параллельных прямыхСкачать

7 класс — Свойства параллельных прямых
Поделиться или сохранить к себе: