Ортоцентр в равнобедренном треугольнике

Точка пересечения высот треугольника — свойства, координаты и расположение ортоцентра

Ортоцентр в равнобедренном треугольнике

Видео:Конкурентность высот треугольника. Ортоцентр.Скачать

Конкурентность высот треугольника.  Ортоцентр.

Что такое высота

Ортоцентр в равнобедренном треугольнике

Если из вершины опустить перпендикуляр на противоположную сторону, получится отрезок, который именуется высотой. В равнобедренном треугольнике 2 отрезка равны, а в равностороннем равны все 3.

У фигур с углами 90 и более градусов высота попадает на противоположную сторону. В случае острого угла дело обстоит иначе. Прямая попадет только на продолжение противоположной стороны и будет находиться вне самой фигуры. Таким образом, если все углы острые, отрезки будут находиться внутри, как и ортоцентр. В тупоугольной фигуре два из трех отрезков будут проходить за его пределами — ортоцентр окажется вне фигуры.

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Свойства ортоцентра

Свойства высот треугольника, пересекающихся в одной точке, давно изучены и описаны. Согласно основному из них, все 3 высоты всегда пересекаются в одном месте. Иногда, чтобы найти это место, отрезки нужно продлить, превратив в ортогональные прямые.

Ортоцентр по отношению к фигуре может быть расположен:

  • внутри;
  • снаружи;
  • в вершине (у прямоугольных треугольников)

Ортоцентр — важная в геометрии характеристика, влияющая на нахождение золотого сечения.

Ортоцентр в равнобедренном треугольнике

Так называется маленький треугольник, расположенный внутри основного, находящийся на пересечении его трех параметров:

Золотое сечение может представлять собой не только треугольную фигуру, но и отрезок. В правильном треугольнике медианы, биссектрисы и высоты совпадают, значит, золотое сечение превращается в точку.

Полезные факты

Местонахождение ортоцентра имеет некоторые закономерности. Их знание принесет пользу при решении задач.

Пусть:

  • H — ортоцентр в ABC;
  • О — центр описанной окружности.

Тогда:

  • окружности, описанные вокруг АБС, АНВ, CHB, HCA, равны:
  • отрезок BH вдвое длиннее отрезка АС;
  • середины отрезков AC и BH разделены расстоянием, равным радиусу описанной окружности.

Задача Фаньяно

Это классическая теорема. Она возникла в процессе поиска фигур с наименьшим периметром. Теорему доказал Фаньяно — итальянский математик и инженер. Это произошло еще в начале XVIII века.

Формулировка: ортотреугольник, то есть фигура, полученная соединением трех оснований треугольника, проведенный внутри остроугольного треугольника, имеет самый маленький периметр изо всех возможных, вписанных в данную фигуру.

Площадь ортотреугольника рассчитывается по формуле:

Ортоцентр в равнобедренном треугольнике

Здесь S — площадь, а, b, c — стороны.

Существует понятие ортоцентрической системы. Оно включает в себя 3 вершины и место пересечения их высот. Любая из данных четырех точек будет являться ортоцентром треугольника, образованного тремя остальными.

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

История изучения

Важное значение имеет место пересечения медиан или центр тяжести. Вместе с ортоцентром это еще одна «замечательная точка», которая была известна еще древним грекам. Так их стали называть начиная с 18 века, другое название «особенные».

Ортоцентр в равнобедренном треугольнике

Исследование этих точек стало началом для создания геометрии треугольника, основателем которой считается Леонард Эйлер. Ученый показал, что в любом треугольнике точки соединения высот, медиан и центр описанного круга находятся на одной линии, которую позже назвали прямой Эйлера.

В позапрошлом веке была обнаружена окружность 9 точек или Фейербаха. Она состоит из оснований медиан, высот и центров высот. Оказалось, что все эти точки лежат на общей окружности, центр которой находится на линии Эйлера.

Каждый отрезок, прочерченный из ортоцентра до соединения с описанной окружностью, всегда будет делиться линией Эйлера на 2 равные части.

Треугольник — удивительная фигура, изучением которой занимается целый раздел геометрии. Ортоцентр и его свойства имеют широкое применение в практической жизни, например, в строительстве. Этот показатель настолько важен и распространен, что существуют калькуляторы, позволяющие определить местонахождение точки по координатам вершин.

Видео:№16 ЕГЭ 2023 по математике. Свойство ортоцентра за 5 минут. Четко и без водыСкачать

№16 ЕГЭ 2023 по математике. Свойство ортоцентра за 5 минут. Четко и без воды

Свойства высот треугольника. Ортоцентр

Схема 1. В треугольнике АВС проведены высоты АМ и СК.
Н – точка пересечения высот треугольника (ортоцентр), Н=АМ∩СК

Запомните этот рисунок. Перед вами – схема, из которой можно получить сразу несколько полезных фактов.

Ортоцентр в равнобедренном треугольнике

1. Треугольники МВК и △АВС, подобны, причем коэффициент подобия
, если Ортоцентр в равнобедренном треугольнике, и Ортоцентр в равнобедренном треугольнике, если Ортоцентр в равнобедренном треугольнике

  1. Четырехугольник АКМС можно вписать в окружность. Эта вспомогательная окружность поможет решить множество задач.
  2. Четырехугольник ВКМН также можно вписать в окружность.
  3. Радиусы окружностей, описанных вокруг треугольников АВС, АНС, ВНС и АВН, равны.
  4. ,где R – радиус описанной окружности .

Докажем эти факты по порядку.

1) Заметим, что на рисунке есть подобные треугольники. Это АВМ и СВК, прямоугольные треугольники с общим углом В, и они подобны по двум углам

Мы получили, что в треугольниках МВК и АВС стороны, прилежащие к углу В, пропорциональны. Получаем, что по углу и двум сторонам.

2) Докажем, что вокруг четырехугольника АКМС можно описать окружность. Для этого необходимо и достаточно, чтобы суммы противоположных углов четырехугольника АКМС были равны .

Пусть ∠ACB=∠BKM=γ (поскольку треугольники МВК и АВС подобны), тогда
– как смежный с углом ВКМ. Получили, что , и это значит, что четырехугольник AKMC можно вписать в окружность.

3) Рассмотрим четырехугольник KBMH. Его противоположные углы ВКН и ВМН — прямые, их сумма равна , и значит, четырехугольник КВМН можно вписать в окружность.

4) По теореме синусов, радиус окружности, описанной вокруг треугольника АВС,

Радиус окружности, описанной вокруг треугольника АНС,
Мы помним, что . Значит, синусы углов АВС и АНС равны, и радиусы окружностей, описанных вокруг треугольников АВС и АНС равны.

5) Докажем, что ,где R – радиус описанной окружности . Поскольку четырехугольник КВМН можно вписать в окружность и углы ВКН и ВМН – прямые, отрезок ВН является диаметром этой окружности. Треугольник МВК также вписан в эту окружность, и по теореме синусов, .

Диаметр окружности, описанной вокруг треугольника АВС, равен Поскольку треугольники МВК и АВС подобны, отношение диаметров описанных вокруг них окружностей равно . Получили, что

Задача ЕГЭ по теме «Высоты треугольника» (Профильный уровень, №16)

2. В остроугольном треугольнике KMN проведены высоты KB и NA.

а) Докажите, что угол ABK равен углу ANK.

б) Найдите радиус окружности, описанной около треугольника ABM, если известно, что и

Ортоцентр в равнобедренном треугольнике

а) Докажем, что
(по двум углам). Запишем отношение сходственных сторон:
Но это значит, что (по углу и двум сторонам), причем .

— смежный с углом ,
,
,четырехугольник ABNK можно вписать в окружность.
(опираются на одну дугу).

Видео:№261. Докажите, что в равнобедренном треугольнике высоты, проведенные из вершин основания, равны.Скачать

№261. Докажите, что в равнобедренном треугольнике высоты, проведенные из вершин основания, равны.

Ортоцентр.

Ортоцентр — точка пересечения прямых, содержащих высоты треугольника.

Ортоцентр в равнобедренном треугольнике

Ортоцентр остроугольного треугольника лежит внутри треугольника.

Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.

Ортоцентр тупоугольного треугольника лежит вне треугольника.

Свойства:

  1. Точка, симметричная ортоцентру относительно стороны треугольника, лежит на описанной около него окружности.
    Ортоцентр в равнобедренном треугольнике
  2. Точка, симметричная ортоцентру относительно середины стороны треугольника, лежит на описанной окружности и диаметрально противоположна вершине треугольника, противолежащей стороне.
  3. Расстояние от вершины треугольника до ортоцентра в два раза больше расстояния от центра описанной окружности до противолежащей стороны.
    Ортоцентр в равнобедренном треугольнике
  4. Сумма квадратов расстояния от вершины треугольника до ортоцентра и длины стороны, противолежащей этой вершине, равна квадрату диаметра описанной окружности.
  5. Радиус описанной окружности, проведенный к вершине треугольника, перпендикулярен соответствующей стороне ортотреугольника.
    Ортоцентр в равнобедренном треугольнике
  6. При изогональном сопряжении ортоцентр переходит в центр описанной окружности.
    Ортоцентр в равнобедренном треугольнике
  7. Ортоцентр в остроугольном треугольнике является инцентром ортотреугольника.
    Ортоцентр в равнобедренном треугольнике
  8. Три отрезка прямых, соединяющих ортоцентр с вершинами остроугольного треугольника, разбивают его на три треугольника, имеющих равные радиусы описанных окружностей. При этом одинаковый радиус этих трех окружностей равен радиусу окружности, описанной около исходного остроугольного треугольника.
    Ортоцентр в равнобедренном треугольнике

📹 Видео

7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

№255. В равнобедренном треугольнике CDE с основанием СЕ проведена высота CF.Скачать

№255. В равнобедренном треугольнике CDE с основанием СЕ проведена высота CF.

№265. В равнобедренном треугольнике ABC с основанием АС проведены биссектриса AF и высота АН.Скачать

№265. В равнобедренном треугольнике ABC с основанием АС проведены биссектриса AF и высота АН.

Равнобедренный треугольник. 7 класс.Скачать

Равнобедренный треугольник. 7 класс.

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)

ВСЕ свойства ортоцентра для №16 на ЕГЭ 2023 по математикеСкачать

ВСЕ свойства ортоцентра для №16 на ЕГЭ 2023 по математике

М2112. Ортоцентр и середины сторон треугольника, параллелограммСкачать

М2112. Ортоцентр и середины сторон треугольника, параллелограмм

№16 из ЕГЭ2022 и олимпиады. Красивое доказательство свойства ортоцентра остроугольного треугольникаСкачать

№16 из ЕГЭ2022 и олимпиады. Красивое доказательство свойства ортоцентра остроугольного треугольника

Ортоцентр треугольникаСкачать

Ортоцентр треугольника

8 класс, 37 урок, Теорема о пересечении высот треугольникаСкачать

8 класс, 37 урок, Теорема о пересечении высот треугольника

№263. Высоты, проведенные к боковым сторонам АВ и АС остроугольного равнобедренного треугольникаСкачать

№263. Высоты, проведенные к боковым сторонам АВ и АС остроугольного равнобедренного треугольника

Свойства равнобедренного треугольника. 7 класс.Скачать

Свойства равнобедренного треугольника. 7 класс.

✓ Красивый факт про ортоцентр | Осторожно, спойлер! | Борис ТрушинСкачать

✓ Красивый факт про ортоцентр | Осторожно, спойлер! | Борис Трушин

№119. В равнобедренном треугольнике DEK с основанием DK=16см отрезок EF— биссектриса,Скачать

№119. В равнобедренном треугольнике DEK с основанием DK=16см отрезок EF— биссектриса,

Медиана, высота и биссектриса треугольника. Центроид, инцентр, ортоцентр. Геометрия 7 класс.Скачать

Медиана, высота и биссектриса треугольника. Центроид, инцентр, ортоцентр. Геометрия 7 класс.
Поделиться или сохранить к себе: