М множество окружностей на плоскости r отношение окружность

Теоретические основы начального курса математики с методикой преподавания (ТОНКМ)
материал на тему

М множество окружностей на плоскости r отношение окружность

Данный материал предназначен для промежуточного контроля знаний по теме: Отношения и соответствия.

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Скачать:

ВложениеРазмер
otnosheniya_i_sootvetstviya.docx17.3 КБ

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Предварительный просмотр:

Отношения и соответствия

  1. Пусть А, В и С – множества натуральных чисел, причем

Какие числа принадлежат каждому из множеств А, В и С?

  1. Можно ли развить множество

Х= ⎨ 7-3; 2 2 ; 5*2; 60:6; 1+3; 0*10; 4:(10-10) ⎬ на классы при помощи отношения «иметь равные значения»?

  1. Установите, какие отношения рассматриваются в следующих задачах, и обоснуйте сходство способов их решения:
  • Пионеры сделали к карнавалу 15 шапочек для мальчиков, а для девочек в 2 раза больше. Сколько всего карнавальных шапочек они сделали?
  • Ученики вырезали для елки 26 звездочек, это в 2 раза меньше, чем снежинок. Сколько всего звездочек и снежинок вырезали ученики?
  1. Можно ли упорядочить множество прямых на плоскости при помощи отношений:
  • «прямая х пересекает прямую у»;
  • «прямая х перпендикулярна прямой у»?
  1. На множестве А отрезков заданы отношения «равно» и «короче». Постройте графы и сформируйте свойства данных отношений. Какое из этих отношений не обладает свойством рефлексивности?
  1. Отношение Т-«иметь одно и то же число делителей» задано на множестве ⎨ 1,2,4,6,7,8,10,11 ⎬ . Покажите, что Т – отношение эквивалентности, и замените все классы эквивалентности.
  1. На множестве Х= ⎨ 1,2,3,4,5,6,7,8,9,10 ⎬ задано отношение «иметь один и тот же остаток при делении на 3». Покажите, что данное отношение есть отношение эквивалентности, и запишите все классы эквивалентности, на которые разбивается множество Х. Сколько таких классов получилось?
  1. На множестве М прямоугольников задано отношение равновеликости. Покажите, что оно является отношением эквивалентности, и назовите классы, на которые разобьется множество М при помощи этого отношения.
  1. Упорядочивает ли множество натуральных чисел отношение «следовать за»? А отношение «непосредственно следовать за»?
  1. М – множество окружностей на плоскости, R- отношение «окружность х лежит внутри окружности у». Упорядочивает ли данное отношение множество М?
  1. На множестве Х= ⎨ 1,2,4,8,12 ⎬ задано отношение «х кратно у». Постройте граф и сформируйте свойства данного отношения.
  1. Даны два множества: А= ⎨ m,t,o,r ⎬ , В= ⎨ o,r,k,l ⎬
  • Найдите объединение и пересечение этих множеств.
  • Найдите число элементов объединения двумя способами:
  1. Сосчитайте число элементов объединения;
  2. Воспользуйтесь формулой n(A ∪ B)=n(A)+n(B)-(A ∩ B)

Видео:Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

По теме: методические разработки, презентации и конспекты

М множество окружностей на плоскости r отношение окружность

Практическая работа по МДК «Теоретические основы начального курса математики с методикой преподавания»

Практическая работа по МДК «Теоретические основы начального курса математики с методикой преподавания» имеет цель: формирование профессиональных компетенций студентов Задание: заполнить алг.

Использование индивидуальных и групповых форм работы при изучении МДК 01.04 «Теоретические основы начального курса математики с методикой преподавания» (специальность 44.02.02 Преподавание в начальных классах)

Технологии группового обучения при организации учебного процесса в ССУЗе.

М множество окружностей на плоскости r отношение окружность

Теоретические основы начального курса математики с методикой преподавания (ТОНКМ)

Данный список вопросов предназначен для проведения промежуточного контроля по предмету.Тема: Математические предложеня. Высказывания.

М множество окружностей на плоскости r отношение окружность

Экзаменационный материал по МДк Теоретические основы начального курса математики с методикой преподавания

Представлен экзаменационный материал комплексного экзамена по ПМ 01. Преподавание по программам начального общего образования МДК 01.04 Теоретические основы начального курса математик с методикой преп.

М множество окружностей на плоскости r отношение окружность

Материал дистанционного курса «Теоретические основы начального курса математики с метоикой преподавания»

Представлен материал дистанционного курса.

Методические указания по выполнению практических занятий студентов в процессе изучения МДК 01.04 Теоретические основы начального курса математики с методикой преподавания

Методические указания разработаны в соответствии с рабочей программой МДК 01.04 Теоретические основы начального курса математики с методикой преподавания ПМ.01 Преподавание по программам начального об.

Тестовые задания МДК.01.04 Теоретические основы начального курса математики с методикой преподавания

Тестовые задания для итогового контроля поМДК.01.04 Теоретические основы начального курса математики с методикой преподавания ПМ.01 Преподавание по программам начального общего образования.

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Свойства отношений на множестве

Отношение R на множестве Х называется рефлексивным, если о каждом элементе множества Х можно сказать, что он находится в отношении R с самим собой: хRх. Если отношение рефлексивно, то в каждой вершине графа имеется петля. И обратно, граф, каждая вершина которого содержит петлю, представляет собой граф рефлексивного отношения.

Примерами рефлексивных отношений являются и отношение «кратно» на множестве натуральных чисел (каждое число кратно самому себе), и отношение подобия треугольников (каждый треугольник подобен самому себе), и отношение «равенства» (каждое число равно самому себе) и др.

Существуют отношения, не обладающие свойством рефлексивности, например, отношение перпендикулярности отрезков: aМ множество окружностей на плоскости r отношение окружностьb, bМ множество окружностей на плоскости r отношение окружностьa (нет ни одного отрезка, о котором можно сказать, что он перпендикулярен самому себе). Поэтому на графе данного отношения нет ни одной петли.

Не обладает свойством рефлексивности и отношение «длиннее» для отрезков, «больше на 2» для натуральных чисел и др.

Отношение R на множестве Х называется антирефлексивным, если для любого элемента из множества Х всегда ложно хRх:М множество окружностей на плоскости r отношение окружностьМ множество окружностей на плоскости r отношение окружность .

Существуют отношения, не являющиеся ни рефлексивными, ни антирефлексивными. Примером такого отношения может служить отношение «точка х симметрична точке у относительно прямой l», заданное на множестве точек плоскости. Действительно, все точки прямой l симметричны сами себе, а точки, не лежащие на прямой l, себе не симметричны.

Отношение R на множестве Х называется симметричным, если выполняется условие: из того, что элемент х находится в отношении с элементом y, следует, что и элемент y находится в отношении R с элементом х: xRyМ множество окружностей на плоскости r отношение окружностьyRx .

Граф симметричного отношения обладает следующей особенностью: вместе с каждой стрелкой, идущей от х к y, граф содержит стрелку, идущую от y к х (рис. 35).

Примерами симметричных отношений могут быть следующие: отношение «параллельности» отрезков, отношение «перпендикулярности» отрезков, отношение «равенства» отрезков, отношение подобия треугольников, отношение «равенства» дробей и др.

Существуют отношения, которые не обладают свойством симметричности.

Действительно, если отрезок х длиннее отрезка у, то отрезок у не может быть длиннее отрезка х. Граф этого отношения обладает особенностью: стрелка, соединяющая вершины, направлена только в одну сторону.

М множество окружностей на плоскости r отношение окружностьОтношение R называют антисимметричным, если для любых элементов х и y из истинности xRy следует ложность yRx: : xRyМ множество окружностей на плоскости r отношение окружностьyRx.

Кроме отношения «длиннее» на множестве отрезков существуют и другие антисимметричные отношения. Например, отношение «больше» для чисел (если х больше у, то у не может быть больше х), отношение «больше на» и др.

Существуют отношения, которые не обладают ни свойством симметричности, ни свойством антисимметричности.

Отношение R на множестве Х называют транзитивным, если из того, что элемент х находится в отношении R с элементом y, а элемент y находится в отношении R с элементом z, следует, что элемент х находится в отношении R с элементом z: xRy и yRzМ множество окружностей на плоскости r отношение окружностьxRz.

Граф транзитивного отношения с каждой парой стрелок, идущих от х к y и от y к z, содержит стрелку, идущую от х к z.

Свойством транзитивности обладает и отношение «длиннее» на множестве отрезков: если отрезок а длиннее отрезка b, отрезок b длиннее отрезка с, то отрезок а длиннее отрезка с. Отношение «равенства» на множестве отрезков также обладает свойством транзитивности: (а=b, b=с)М множество окружностей на плоскости r отношение окружность(а=с).

Существуют отношения, которые не обладают свойством транзитивности. Таким отношением является, например, отношение перпендикулярности: если отрезок а перпендикулярен отрезку b, а отрезок b перпендикулярен отрезку с, то отрезки а и с не перпендикулярны!

Существует еще одно свойство отношений, которое называется свойством связанности, а отношение, обладающее им, называют связанным.

Отношение R на множестве Х называется связанным, если для любых элементов х и y из данного множества выполняется условие: если х и y различны, то либо х находится в отношении R с элементом y, либо элемент y находится в отношении R с элементом х. С помощью символов это определение можно записать так: xМ множество окружностей на плоскости r отношение окружностьy М множество окружностей на плоскости r отношение окружностьxRy или yRx.

Например, свойством связанности обладает отношение «больше» для натуральных чисел: для любых различных чисел х и y можно утверждать, либо x>y, либо y>x.

На графе связанного отношения любые две вершины соединены стрелкой. Справедливо и обратное утверждение.

Существуют отношения, которые не обладают свойством связанности. Таким отношением, например, является отношение делимости на множестве натуральных чисел: можно назвать такие числа х и y, что ни число х не является делителем числа y, ни число y не является делителем числа х (числа 17 и 11, 3 и 10 и т.д.).

Рассмотрим несколько примеров. На множестве Х= задано отношение «число х кратно числу y». Построим граф данного отношения и сформулируем его свойства.

Про отношение равенства дробей говорят, оно является отношением эквивалентности.

Отношение R на множестве Х называется отношением эквивалентности, если оно одновременно обладает свойством рефлексивности, симметричности и транзитивности.

Примерами отношений эквивалентности могут служить: отношения равенства геометрических фигур, отношение параллельности прямых (при условии, что совпадающие прямые считаются параллельными).

В рассмотренном выше отношении «равенства дробей», множество Х разбилось на три подмножества: <М множество окружностей на плоскости r отношение окружность; М множество окружностей на плоскости r отношение окружность; М множество окружностей на плоскости r отношение окружность>, <М множество окружностей на плоскости r отношение окружность; М множество окружностей на плоскости r отношение окружность>, <М множество окружностей на плоскости r отношение окружность>. Эти подмножества не пересекаются, а их объединение совпадает с множеством Х, т.е. имеем разбиение множества на классы.

Итак, если на множестве Х задано отношение эквивалентности, то оно порождает разбиение этого множества на попарно непересекающиеся подмножества – классы эквивалентности.

Так, мы установили, что отношению равенства на множестве
Х= <М множество окружностей на плоскости r отношение окружность;М множество окружностей на плоскости r отношение окружность; М множество окружностей на плоскости r отношение окружность; М множество окружностей на плоскости r отношение окружность; М множество окружностей на плоскости r отношение окружность; М множество окружностей на плоскости r отношение окружность> соответствует разбиение этого множества на классы эквивалентности, каждый из которых состоит из равных между собой дробей.

Принцип разбиения множества на классы при помощи некоторого отношения эквивалентности является важным принципом математики. Почему?

Во-первых, эквивалентный – это значит равносильный, взаимозаменяемый. Поэтому элементы одного класса эквивалентности взаимозаменяемы. Так, дроби, оказавшиеся в одном классе эквивалентности <М множество окружностей на плоскости r отношение окружность; М множество окружностей на плоскости r отношение окружность; М множество окружностей на плоскости r отношение окружность>, неразличимы с точки зрения отношения равенства, и дробь М множество окружностей на плоскости r отношение окружность может быть заменена другой, например М множество окружностей на плоскости r отношение окружность. И эта замена не изменит результата вычислений.

Во-вторых, поскольку в классе эквивалентности оказываются элементы, неразличимые с точки зрения некоторого отношения, то считают, что класс эквивалентности определяется любым своим представителем, т.е. произвольным элементом класса. Так, любой класс равных дробей можно задать, указав любую дробь, принадлежащую этому классу. Определение класса эквивалентности по одному представителю позволяет вместо всех элементов множества изучать совокупность представителей из классов эквивалентности. Например, отношение эквивалентности «иметь одинаковое число вершин», заданное на множестве многоугольников, порождает разбиение этого множества на классы треугольников, четырехугольников, пятиугольников и т.д. свойства, присущие некоторому классу, рассматриваются на одном его представителе.

В-третьих, разбиение множества на классы с помощью отношения эквивалентности используется для введения новых понятий. Например, понятие «пучок прямых» можно определить как то общее, что имеют параллельные прямые между собой.

Другим важным видом отношений являются отношения порядка. Рассмотрим задачу. На множестве Х=<3, 4, 5, 6, 7, 8, 9, 10> задано отношение «иметь один и тот же остаток при делении на 3». Это отношение порождает разбиение множества Х на классы: в один попадут все числа, при делении которых на 3 получается в остатке 0 (это числа 3, 6, 9). Во второй – числа, при делении которых на 3 в остатке получается 1 (это числа 4, 7, 10). В третий попадут все числа, при делении которых на 3 в остатке получается 2 (это числа 5, 8). Действительно, полученные множества не пересекаются и их объединение совпадает с множеством Х. Следовательно, отношение «иметь один и тот же остаток при делении на 3», заданное на множестве Х, является отношением эквивалентности.

Возьмем еще пример: множество учащихся класса можно упорядочить по росту или возрасту. Заметим, что это отношение обладает свойствами антисимметричности и транзитивности. Или всем известен порядок следования букв в алфавите. Его обеспечивает отношение «следует».

Отношение R на множестве Х называется отношением строгого порядка, если оно одновременно обладает свойствами антисимметричности и транзитивности. Например, отношение «х Просмотров 154 803 Комментариев 0

Видео:Окружность и круг, 6 классСкачать

Окружность и круг, 6 класс

Уравнение окружности

Окружностью называется множество точек плоскости, равноудаленных от данной точки, называемой центром.

Если точка С — центр окружности, R — ее радиус, а М — произвольная точка окружности, то по определению окружности

Равенство (1) есть уравнение окружности радиуса R с центром в точке С.

Пусть на плоскости задана прямоугольная декартова система координат (рис. 104) и точка С(а; b) — центр окружности радиуса R. Пусть М(х; у) — произвольная точка этой окружности.

М множество окружностей на плоскости r отношение окружность

Так как |СМ| = ( sqrt ), то уравнение (1) можно записать так:

(x — a) 2 + (у — b) 2 = R 2 (2)

Уравнение (2) называют общим уравнением окружности или уравнением окружности радиуса R с центром в точке (а; b). Например, уравнение

есть уравнение окружности радиуса R = 5 с центром в точке (1; —3).

Если центр окружности совпадает с началом координат, то уравнение (2) принимает вид

Уравнение (3) называют каноническим уравнением окружности.

Задача 1. Написать уравнение окружности радиуса R = 7 с центром в начале координат.

Непосредственной подстановкой значения радиуса в уравнение (3) получим

Задача 2. Написать уравнение окружности радиуса R = 9 с центром в точке С(3; —6).

Подставив значение координат точки С и значение радиуса в формулу (2), получим

(х — 3) 2 + (у — (—6)) 2 = 81 или (х — 3) 2 + (у + 6) 2 = 81.

Задача 3. Найти центр и радиус окружности

Сравнивая данное уравнение с общим уравнением окружности (2), видим, что а = —3, b = 5, R = 10. Следовательно, С(—3; 5), R = 10.

Задача 4. Доказать, что уравнение

является уравнением окружности. Найти ее центр и радиус.

Преобразуем левую часть данного уравнения:

Это уравнение представляет собой уравнение окружности с центром в точке (—2; 1); радиус окружности равен 3.

Задача 5. Написать уравнение окружности с центром в точке С(—1; —1), касающейся прямой АВ, если A (2; —1), B(— 1; 3).

Напишем уравнение прямой АВ:

М множество окружностей на плоскости r отношение окружностьили 4х + 3y —5 = 0.

Так как окружность касается данной прямой, то радиус, проведенный в точку касания, перпендикулярен этой прямой. Для отыскания радиуса необходимо найти расстояние от точки С(—1; —1) — центра окружности до прямой 4х + 3y —5 = 0:

М множество окружностей на плоскости r отношение окружность

Напишем уравнение искомой окружности

Пусть в прямоугольной системе координат дана окружность x 2 + у 2 = R 2 . Рассмотрим ее произвольную точку М(х; у) (рис. 105).

М множество окружностей на плоскости r отношение окружность

Пусть радиус-вектор OM > точки М образует угол величины t с положительным направлением оси Ох, тогда абсцисса и ордината точки М изменяются в зависимости от t

(0 2 = 3 cos 2 t, у 2 = 3 sin 2 t. Складывая эти равенства почленно, получаем

🎥 Видео

10 класс, 12 урок, Числовая окружность на координатной плоскостиСкачать

10 класс, 12 урок, Числовая окружность на координатной плоскости

Окружность. 7 класс.Скачать

Окружность. 7 класс.

Две окружности на плоскости. Математика. 6 класс.Скачать

Две окружности на плоскости. Математика. 6 класс.

Математика 6 класс (Урок№76 - Длина окружности. Площадь круга.)Скачать

Математика 6 класс (Урок№76 - Длина окружности. Площадь круга.)

Длина окружности. Площадь круга, 6 классСкачать

Длина окружности. Площадь круга, 6 класс

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

7 класс, 21 урок, ОкружностьСкачать

7 класс, 21 урок, Окружность

9 класс, 8 урок, Взаимное расположение двух окружностейСкачать

9 класс, 8 урок, Взаимное расположение двух окружностей

9 класс, 26 урок, Длина окружностиСкачать

9 класс, 26 урок, Длина окружности

Уравнение окружности (1)Скачать

Уравнение окружности (1)

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

Длина окружности. Практическая часть - решение задачи. 6 класс.Скачать

Длина окружности. Практическая часть - решение задачи. 6 класс.

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy
Поделиться или сохранить к себе: