Окружность вписанная в равнобедренный треугольник авс с основанием аб

Задача 5632 Окружность, вписанная в равнобедренный.

Условие

Окружность вписанная в равнобедренный треугольник авс с основанием аб

Окружность, вписанная в равнобедренный треугольник ABC (с основанием AC), касается его боковых сторон в точках M и N. Точка M делит боковую сторону на отрезки 10 и 7, считая от основания треугольника ABC.

а) Докажите, что треугольники MBN и ABC подобны.

б) Найдите отношение площадей треугольника MBN и трапеции AMNC.

Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

Решение №1380 Окружность, вписанная в равнобедренный треугольник АВС, касается его боковых сторон АВ и АС …

Окружность, вписанная в равнобедренный треугольник АВС, касается его боковых сторон АВ и АС в точках Т и М соответственно. Найдите ТМ, если АВ = 25, ВС = 14.

Источник задания: alexlarin.net

Проведём высоту АН:

Окружность вписанная в равнобедренный треугольник авс с основанием аб

В равнобедренном треугольнике высота является и медианой, которая делит ВС на две равные части:

ВН = НС = ВС/2 =14/2 = 7

Отрезки касательных к окружности, проведенных из одной точки, равны. Тогда:

ВН = ВТ = 7
СН = СМ = 7

Найдём АТ и АМ:

АТ = АВ – ВТ = 25 – 7 = 18
АС = АС – СА = 25 – 7 = 18

Треугольники АВС и АТМ подобны по двум пропорциональным сторонам и общему углу А. Составим соотношение сторон и найдём ТМ:

Окружность вписанная в равнобедренный треугольник авс с основанием аб

Окружность вписанная в равнобедренный треугольник авс с основанием аб

18·14 = 25·TM
252 = 25·TM
TM = 252/25 = 10,08

Видео:Вписанная и описанная около равнобедренного треугольника, окружностьСкачать

Вписанная и описанная около равнобедренного треугольника,  окружность

Радиус вписанной окружности в равнобедренный треугольник онлайн

С помощю этого онлайн калькулятора можно найти радиус вписанной в треугольник окружности, в том числе радиус вписанной в равнобедренный треугольник окружности. Для нахождения радиуса вписанной в треугольник окружности выберите тип треугольника, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Открыть онлайн калькулятор

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

1. Радиус вписанной в равнобедренный треугольник окружности, если известны основание и боковая сторона

Пусть известны известны основание a и боковая сторона b равнобедренного треугольника (Рис.1). Выведем формулу вычисления радиуса вписанной окружности через основание и боковую сторону.

Окружность вписанная в равнобедренный треугольник авс с основанием аб

Радиус вписанной в треугольник окружности через три стороны a, b, c вычисляется из следующей формулы:

Окружность вписанная в равнобедренный треугольник авс с основанием аб(1)

где полупериметр p вычисляется из формулы:

Окружность вписанная в равнобедренный треугольник авс с основанием аб.(2)

Учитывая, что у равнобедренного треугольника боковые стороны равны (( small b=c )), имеем:

( small p=frac ) ( small =frac, )(3)
( small p-a=frac-a ) ( small =frac, )(4)
( small p-b=p-c=frac-b ) ( small =frac. )(5)

Подставляя (3)-(5) в (1), получим формулу вычисления радиуса вписанной в равнобедренный треугольник окружности:

Окружность вписанная в равнобедренный треугольник авс с основанием аб,
Окружность вписанная в равнобедренный треугольник авс с основанием аб.(6)

Пример 1. Известны основание a=13 и боковая сторона b=7 равнобедренного треугольника. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (6). Подставим значения ( small a,; b ) в (6):

Окружность вписанная в равнобедренный треугольник авс с основанием аб

Ответ: Окружность вписанная в равнобедренный треугольник авс с основанием аб

Видео:ЕГЭ Математика Задание 6#27935Скачать

ЕГЭ Математика Задание 6#27935

2. Радиус вписанной в равнобедренный треугольник окружности, если известны основание и угол при основании

Пусть известны основание a и прилежащий к ней угол β равнобедренного треугольника (Рис.2). Выведем формулу радиуса вписанной в треугольник окружности.

Окружность вписанная в равнобедренный треугольник авс с основанием аб

Из центра вписанной окружности проведем перпендикуляры OH и OE к сторонам a=BC и b=AC, соответственно (r=OH=OE). Соединим точки C и O. Полученные прямоугольные треугольники OCE и OCH равны по гипотенузе и катету (см. статью Прямоугольный треугольник. Тогда ( small angle OCE=angle OCH=frac. ) Для прямоугольного треугольника OCH можно записать:

( small frac=frac<large frac>=mathrmfrac .)

Откуда получим формулу радиуса вписанной в треугольник окружности:

( small r=frac cdot mathrmfrac .)(8)
( small r=frac cdot frac .)(9)

Пример 2. Известны основание ( small a=15 ) и ( small beta=30° ) равнобедренного треугольника. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанный в треугольник воспользуемся формулой (8) (или (9)). Подставим значения ( small a=15, ; beta=30° ) в (8):

Окружность вписанная в равнобедренный треугольник авс с основанием аб

Ответ: Окружность вписанная в равнобедренный треугольник авс с основанием аб

Видео:Задание 6 ЕГЭ #156Скачать

Задание 6 ЕГЭ #156

3. Радиус вписанной в равнобедренный треугольник окружности, если известны боковая сторона и угол при основании

Пусть известны боковая сторона b и угол при основании β равнобедренного треугольника (Рис.3). Найдем формулу радиуса вписанной в треугольник окружности.

Окружность вписанная в равнобедренный треугольник авс с основанием аб

Высота равнобедренного треугольника AH делит равнобедренный треугольник ABC на две равные части. Тогда для треугольника AHC справедливо равенство:

( small frac=frac<large frac>= cos beta .)
( small a=2b cdot cos beta .)(10)

Подставляя (10) в (8), получим формулу вписанной в равнобедренный треугольник окружности:

( small r=frac cdot mathrmfrac=frac cdot mathrmfrac ) ( small =b cos beta cdot mathrmfrac )
( small r=b cdot cos beta cdot mathrmfrac )(11)

Учитывая формулы половинного угла тригонометрических функций, формулу (11) можно записать и так:

( small r=b cdot frac )(12)

Пример 3. Известны боковая сторона равнобедренного треугольника: ( small b=9 ) и угол при основании β=35°. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (11) (или (12)).

Подставим значения ( small b=9 ,; beta=35° ) в (11):

Окружность вписанная в равнобедренный треугольник авс с основанием аб

Ответ: Окружность вписанная в равнобедренный треугольник авс с основанием аб

Видео:2083 окружность вписанная в равнобедренный треугольникСкачать

2083 окружность вписанная в равнобедренный треугольник

4. Радиус вписанной в равнобедренный треугольник окружности, если известны боковая сторона и высота

Пусть известны боковая сторона b и высота h равнобедренного треугольника (Рис.4). Найдем формулу радиуса вписанной в треугольник окружности.

Окружность вписанная в равнобедренный треугольник авс с основанием аб

Формула радиуса вписанной окружности через площадь и полупериметр имеет следующий вид (см. статью на странице Радиус вписанной в треугольник окружности онлайн) :

Окружность вписанная в равнобедренный треугольник авс с основанием аб,(13)
Окружность вписанная в равнобедренный треугольник авс с основанием аб(14)

Так как треугольник AHC прямоугольный, то из Теоремы Пифагора имеем:

( small left( fracright)^2=b^2-h^2 )
( small a=2 cdot sqrt )(15)

Площадь равнобедренного треугольника по основанию и высоте вычисляется из формулы:

( small S=frac cdot a cdot h. )(16)

Подставим (15) в (16):

( small S=h cdot sqrt )(17)

Учитывая, что для равнобедренного треугольника b=c, а также равенство (15), получим:

( small p=frac ) ( small =frac ) ( small =frac+b )( small =b+ sqrt )(18)

Подставляя, наконец, (17) и (18) в (13), получим формулу радиуса вписанной в равнобедренный треугольник окружности:

( small r=frac ) ( small =frac<large h cdot sqrt><large b+ sqrt> )(19)

Пример 4. Боковая сторона и высота равнобедренного треугольника равны ( small b=7 ,) ( small h=5, ) соответственно. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в равнобедренный треугольник воспользуемся формулой (19). Подставим значения ( small b=7 ,) ( small h=5 ) в (19):

Окружность вписанная в равнобедренный треугольник авс с основанием аб

Ответ: Окружность вписанная в равнобедренный треугольник авс с основанием аб

Видео:Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать

Задача 6 №27934 ЕГЭ по математике. Урок 148

5. Радиус вписанной в равнобедренный треугольник окружности, если известны основание и высота

Пусть известны основание a и высота h равнобедренного треугольника (Рис.5). Найдем формулу радиуса вписанной в равнобедренный треугольник окружности.

Окружность вписанная в равнобедренный треугольник авс с основанием аб

Из формулы (15) найдем b:

( small b^2-h^2=left( frac right)^2 )
( small b^2= frac +h^2 )
( small b= frac cdot sqrt)(20)

Подставляя (20) в (19), получим формулу радиуса вписанной окружности в равнобедренный треугольник:

( small r=frac<large h cdot sqrt><large b+ sqrt>) ( small =frac<large h cdot sqrt<frac+h^2-h^2>><large frac cdot sqrt+ sqrt<frac+h^2-h^2>>) ( small = large frac< h cdot frac>< frac cdot sqrt+frac >)
( small r=large frac<a+ sqrt>)(21)

Пример 5. Основание и высота равнобедренного треугольника равны ( small a=7 ,) ( small h=9, ) соответственно. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в равнобедренный треугольник воспользуемся формулой (21). Подставим значения ( small a=7 ,) ( small h=9 ) в (21):

Окружность вписанная в равнобедренный треугольник авс с основанием аб

Ответ: Окружность вписанная в равнобедренный треугольник авс с основанием аб

🔥 Видео

ОГЭ Задание 25 Демонстрационный вариант 2022, математикаСкачать

ОГЭ Задание 25 Демонстрационный вариант 2022, математика

№109. В равнобедренном треугольнике ABC с основанием ВС проведена медиана AM. Найдите медиану AMСкачать

№109. В равнобедренном треугольнике ABC с основанием ВС проведена медиана AM. Найдите медиану AM

Вписанная окружность. ЗАДАЧА ИЗ ГОНКОНГА!Скачать

Вписанная окружность. ЗАДАЧА ИЗ ГОНКОНГА!

№691. Точка касания окружности, вписанной в равнобедренный треугольник, делит однуСкачать

№691. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну

Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторонСкачать

Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон

2031 окружность центром в точке О описана около равнобедренного треугольника ABCСкачать

2031 окружность центром в точке О описана около равнобедренного треугольника ABC

Задание 24 Равнобедренный описанный треугольник Свойство отрезков касательныхСкачать

Задание 24  Равнобедренный описанный треугольник  Свойство отрезков касательных

№118. На основании ВС равнобедренного треугольника ABC отмечены точки М и N так, что BM=CN. ДокажитеСкачать

№118. На основании ВС равнобедренного треугольника ABC отмечены точки М и N так, что BM=CN. Докажите

ЕГЭ 2017 | Задание 3 | Окружность, вписанная ... ✘ Школа ПифагораСкачать

ЕГЭ 2017 | Задание 3 | Окружность, вписанная ... ✘ Школа Пифагора

№203. Через центр О окружности, вписанной в треугольник ABC, проведена прямая ОK, перпендикулярнаяСкачать

№203. Через центр О окружности, вписанной в треугольник ABC, проведена прямая ОK, перпендикулярная

Вписанная окружностьСкачать

Вписанная окружность

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Равнобедренный треугольник. 7 класс.Скачать

Равнобедренный треугольник. 7 класс.
Поделиться или сохранить к себе: