Окружность проходит через вершину прямого угла и касается гипотенузы
Обновлено
Поделиться
Просмотров1538
Окружность проходит через вершину прямого угла и касается гипотенузы
Окружность S проходит через вершину C прямого угла и пресекает его стороны в точках, удаленных от вершины C на расстояния 6 и 8. Найдите радиус окружности, вписанной в данный угол и касающийся окружности S.
Пусть окружность S с центром O и радиусом R пересекает стороны данного прямого угла в точках A и B, AC = 8, BC = 6, искомая окружность с центром Q касается сторон и BC угла ACB в точках N и K соответственно, а окружности S — в точке M.
Точка O — центр окружности, описанной около прямоугольного треугольника ABC, поэтому O — середина его гипотенузы AB.
Линия центров двух касающихся окружностей проходит через точку их касания, поэтому точки M, O и Q лежат на одной прямой. Опустим перпендикуляр OH из центра окружности S на прямую BC. Тогда OH — средняя линия треугольника ABC поэтому и а так как центр окружности, вписанной в угол, лежит на его биссектрисе, то ∠QCK = 45°, поэтому CK = QK = r.
Опустим перпендикуляр QF из центра искомой окружности на прямую OH. Тогда
Предположим, что искомая окружность и окружность касаются внутренним образом. Тогда
Рассмотрим прямоугольный треугольник OFQ. По теореме Пифагора OQ 2 = OF 2 + QF 2 или
откуда находим, что
Если же искомая окружность касается данной внешним образом, то
Тогда из соответствующего уравнения (5 + r) 2 = (4 − r) 2 + (r − 3) 2 находим, что r = 24.
Видео:№155. Через вершину прямого угла С равнобедренного прямоугольного треугольника ABCСкачать
Касательная к окружности
О чем эта статья:
Видео:Геометрия Окружность касается большего катета прямоугольного треугольника, проходит через вершинуСкачать
Касательная к окружности, секущая и хорда — в чем разница
В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.
Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.
Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).
Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.
Видео:Геометрия Окружность центр которой принадлежит гипотенузе прямоугольного треугольника касаетсяСкачать
Свойства касательной к окружности
Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.
Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.
Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:
окружность с центральной точкой А;
прямая а — касательная к ней;
радиус АВ, проведенный к касательной.
Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. а ⟂ АВ.
Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.
В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.
Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.
Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.
Задача
У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.
Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.
Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.
Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.
Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.
Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.
Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.
Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.
Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.
Задача 1
У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.
Решение
Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.
∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).
Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:
∠BDC = ∠BDA × 2 = 30° × 2 = 60°
Итак, угол между касательными составляет 60°.
Задача 2
К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.
Решение
Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.
Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.
∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°
Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.
Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.
Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.
Задача 1
Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.
Решение
Исходя из соотношения касательной и секущей МА 2 = МВ × МС.
Найдем длину внешней части секущей:
МС = МВ — ВС = 16 — 12 = 4 (см)
МА 2 = МВ × МС = 16 х 4 = 64
Задача 2
Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.
Решение
Допустим, что МО = у, а радиус окружности обозначим как R.
В таком случае МВ = у + R, а МС = у – R.
Поскольку МВ = 2 МА, значит:
МА = МВ : 2 = (у + R) : 2
Согласно теореме о касательной и секущей, МА 2 = МВ × МС.
(у + R) 2 : 4 = (у + R) × (у — R)
Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:
Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).
Ответ: MO = 10 см.
Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.
Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда AВ. Отметим на касательной прямой точку C, чтобы получился угол AВC.
Задача 1
Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.
Решение
Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.
АВ = ∠АВС × 2 = 32° × 2 = 64°
Задача 2
У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.
Решение
Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:
КМ = 2 ∠МКВ = 2 х 84° = 168°
Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.
∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2
Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:
∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°
Видео:16 задание ОГЭ математика 2023 | УмскулСкачать
Окружность радиуса R касается гипотенузы равнобедренного прямоугольного треугольника в вершине его острого угла и проходит через вершину прямого угла?
Геометрия | 10 — 11 классы
Окружность радиуса R касается гипотенузы равнобедренного прямоугольного треугольника в вершине его острого угла и проходит через вершину прямого угла.
Найдите длину дуги, заключенной внутри треугольника, если R = 8 /.
Поскольку окружность КАСАЕТСЯ гипотенузы АС треугольника в вершине его острого угла С, то радиус ОС перпендикулярен АС.
Это значит, что угол ОСА = 90 градусам.
Поскольку сумма углов треугольника равна 180 градусам, угол АВС прямой из условий задачи,
то сумма углов АСВ и ВАС равна 90 градусам.
Треугольник АВС равнобедренный, т.
Е. углы АСВ и ВАС равны между собой, и каждый из них равен = 90 градусов / 2 = 45 градусам.
В прямоугольном треугольнике высота проведенная из вершины прямого угла делит гипотенузу на отрезки 9 и 16 найдите радиус окружности вписанной в этот треугольник?
В прямоугольном треугольнике высота проведенная из вершины прямого угла делит гипотенузу на отрезки 9 и 16 найдите радиус окружности вписанной в этот треугольник.
Видео:ОГЭ 2021. Задание 24. Геометрическая задача на вычисление.Скачать
В прямоугольном треугольнике высота проведенная из вершины прямого угла делит гипотенузу на отрезки 9 и 16 найдите радиус окружности вписанной в этот треугольник?
В прямоугольном треугольнике высота проведенная из вершины прямого угла делит гипотенузу на отрезки 9 и 16 найдите радиус окружности вписанной в этот треугольник.
На этой странице сайта вы найдете ответы на вопрос Окружность радиуса R касается гипотенузы равнобедренного прямоугольного треугольника в вершине его острого угла и проходит через вершину прямого угла?, относящийся к категории Геометрия. Сложность вопроса соответствует базовым знаниям учеников 10 — 11 классов. Для получения дополнительной информации найдите другие вопросы, относящимися к данной тематике, с помощью поисковой системы. Или сформулируйте новый вопрос: нажмите кнопку вверху страницы, и задайте нужный запрос с помощью ключевых слов, отвечающих вашим критериям. Общайтесь с посетителями страницы, обсуждайте тему. Возможно, их ответы помогут найти нужную информацию.
Пусть в треугольнике ABC известны стороны AB = c, BC = b и медиана BM = m. На луче AM отложим отрезок MD, MD = AM и соединим точку D с точками B и C. Поскольку в полученном четырехугольнике ABCD диагонали точкой пересечения делятся пополам, то ABCD..
∠АВС = ∠А₁АС + ∠С₁СА ∠А₁АС = ∠С₁СА = х х + х + 130 = 180 2х + 130 = 180 2х = 180 — 130 2х = 50 х = 25 = ∠А₁АС = ∠С₁СА Тогда : ∠АВС = 25 + 25 = 50 Пусть ∠А = ∠С = у Тогда : у + у + 50 = 180 2у + 50 = 180 2у = 130 у = 65 = ∠А = ∠С ∠АА₁В = 180 — (ВАА₁ +..
Весь циферблат равен 360°. Каждые 5 минут — это 30° (360 : 12 = 30). 5 час — это отсек 25 минуты. Так же известно, что есть 10 минут. Получается, что угол занимает по три пятиминутки ((25 — 10) : 5 = 3) Узнаём градусную меру : 3•30° = 90°.
Большая дуга относится к меньшей как 4 : 1. Т. е. Большая дуга — 4 части, меньшая — 1 часть. Вся окружность — 5 частей. Градусная мера окружности 360°, откуда 1 часть = 360° : 5 = 72°. Это меньшая дуга. Большая дуга = 72 * 4 = 288°. Ответ : 72..
По теореме Пифагора : смНайдем синус угла B : sinB = AC / AB = 5 / 10 = 1 / 2значит, В = 30 градусов.
ABCD — трапеция (буквы можешь расположить, как хочешь)AC — диагональBC = 10L ACB = L DL CAD = L ACB (по свойству трапеции) — — — — — — > L D = L CAD — — — — — > AC = CDL ACB = L CAD — — — — — > L BAD = 90 град. — — — — > L D = L CAD = L ACB = 90 2..