Окружность касается стороны AC остроугольного треугольника ABC и делит каждую из сторон AB и BC на три равные части.
а) Докажите, что треугольник ABC равнобедренный.
б) Найдите, в каком отношении высота этого треугольника делит сторону BC.
а) Пусть окружность делит сторону AB на три равные части (рис. 1)
и делит сторону BC на три равные части
Тогда по свойству секущих
б) Пусть окружность касается стороны AC треугольника ABC в точке M (рис. 2). Поскольку
Пусть AH — высота треугольника, тогда
Таким образом,
Критерии оценивания выполнения задания | Баллы |
---|---|
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
Получен обоснованный ответ в пункте б) имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
Имеется верное доказательство утверждения пункта а) при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, Видео:№692. В треугольник ABC вписана окружность, которая касается сторон АВ, ВС и СА в точках Р, Q и RСкачать Окружность касается стороны ас2021-11-23 а) Пусть $BC=a$, $AC=b$, $AB=c$, $p=frac$ — полупериметр треугольника, а вневписанная окружность касается продолжений сторон $AB$ и $AC$ в точках $K$ и $L$ соответственно (рис.1). Тогда Аналогично докажем, что $BM=p-b=frac$. Следовательно, б) Пусть $O$ -центр вписанной окружности треугольника $ABC$ (рис.2), $O_$ — центр вневписанной окружности, касающейся стороны $BC$. Радиусы $OM$ и $O_N$ этих окружностей параллельны, т.к. они перпендикулярны одной и той же прямой $BC$. Из прямоугольного треугольника $OHO_$ находим, что Видео:Окружность касается боковых сторон АВ и ВС остроугольного треугольника АВС в точкахА и С соответствеСкачать Окружность касается стороны асБАЗА ЗАДАНИЙ Задание № 16. Планиметрия с доказательством. 1. Прямая, проходящая через вершину B прямоугольника ABCD перпендикулярно диагонали AC, пересекает сторону AD в точке M, равноудалённой от вершин B и D. 2. К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно. 3. Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC=CD. 4. В треугольнике ABC точки A 1 , B 1 , C 1 — середины сторон BC, AC и A B соответственно, AH— высота, ∠BAC = 60°, ∠BCA = 45°. 5. Две окружности касаются внутренним образом в точке A, причём меньшая проходит через центр большей. Хорда BC большей окружности касается меньшей в точке P. Хорды AB и AC пересекают меньшую окружность в точках K и M соответственно. 6. Две окружности касаются внутренним образом в точке A, причём меньшая окружность проходит через центр O большей. Диаметр BC большей окружности вторично пересекает меньшую окружность в точке M, отличной от A. Лучи AO и AM вторично пересекают большую окружность в точках P и Q соответственно. Точка C лежит на дуге AQ большей окружности, не содержащей точку P. 7. Две окружности касаются внутренним образом в точке K, причём меньшая проходит через центр большей. Хорда MN большей окружности касается меньшей в точке C. Хорды KM и KN пересекают меньшую окружность в точках A и B соответственно, а отрезки KC и AB пересекаются в точке L. 8. Дан прямоугольный треугольник ABC с прямым углом C. На катете AC взята точка M. Окружность с центром O и диаметром CM касается гипотенузы в точке N. 9. Точка B лежит на отрезке AC. Прямая, проходящая через точку A, касается окружности с диаметром BC в точке M и второй раз пересекает окружность с диаметром AB в точке K. Продолжение отрезка MB пересекает окружность с диаметром AB в точке D. 10. Точка M лежит на стороне BC выпуклого четырёхугольника ABCD, причём B и C — вершины равнобедренных треугольников с основаниями AM и DM соответственно, а прямые AM и MD перпендикулярны. 11. В равнобедренном тупоугольном треугольнике ABC на продолжение боковой стороны BC опущена высота AH. Из точки H на сторону AB и основание AC опущены перпендикуляры HK и HM соответственно. 12. Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр вписанной в него окружности, H — точка пересечения высот. Известно, что ∠BAC = ∠OBC+∠OCB. 13. Точки P, Q, W делят стороны выпуклого четырёхугольника ABCD в отношении AP:PB = CQ:QB = CW:WD = 3:4, радиус окружности, описанной около треугольника PQW, равен 10, PQ = 16, QW = 12, угол PWQ— острый. 14. Окружность проходит через вершины В и С треугольника АВС и пересекает АВ и АС в точках C 1 , B 1 соответственно. 15. Дана трапеция ABCD с основаниями AD и BC. Диагональ BD разбивает её на два равнобедренных треугольника с основаниями AD и CD. 16. В прямоугольном треугольнике АВС с прямым углом С точки М и N – середины катетов АС и ВС соответственно, СН – высота. 17. В треугольнике АВС угол АВС равен 60°. Окружность, вписанная в треугольник, касается стороны AC в точке M. 18. В треугольнике АВС проведены высоты АК и СМ. На них из точек М и К опущены перпендикуляры МЕ и КН соответственно. 19. Окружность, вписанная в треугольник KLM, касается сторон KL, LM, MK в точках A, B и C соответственно. б) Найдите отношение LB:BM, если известно, что KC:CM = 3:2 и ∠ MKL = 60. 20. Дана равнобедренная трапеция ABCD с основаниями AD и BC. Окружность с центром O, построенная на боковой стороне AB как на диаметре, касается боковой стороны CD и второй раз пересекает большее основание AD в точке H, точка Q — середина CD. 21. Квадрат ABCD вписан в окружность. Хорда CE пересекает его диагональ BD в точке K. 22. В прямоугольном треугольнике ABC точки M и N – середины гипотенузы AB и катета BC соответственно. Биссектриса ∠ BAC пересекает прямую MN в точке L 23. Окружность касается стороны AC остроугольного треугольника ABC и делит каждую из сторон AB и BC на три равные части. 24. На катетах AC и BC прямоугольного треугольника ABC как на диаметрах построены окружности, второй раз пересекающиеся в точке M. Точка Q лежит на меньшей дуге MB окружности с диаметром BC. Прямая CQ второй раз пересекает окружность с диаметром AC в точке P. 25. Окружность, построенная на медиане BM равнобедренного треугольника ABC как на диаметре, второй раз пересекает основание BC в точке K. 26. В прямоугольной трапеции ABCD с прямым углом при вершине A расположены две окружности. Одна из них касается боковых сторон и большего основания AD, вторая – боковых сторон, меньшего основания BC и первой окружности. 27. В трапецию ABCD с основаниями AD и BC вписана окружность с центром O. 28. Дана трапеция с диагоналями равными 8 и 15. Сумма оснований равна 17. 📽️ ВидеоВсё про углы в окружности. Геометрия | МатематикаСкачать Геометрия Вписанная окружность касается сторон AB, AC, BC треугольника ABC в точках P, R, TСкачать ОКРУЖНОСТЬ КАСАЕТСЯ КАТЕТОВ, ЖЕСТЬ, ПРОСТО!Скачать 🔴 В угол C, равный 165°, вписана окружность с ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать Вневписанная окружностьСкачать ОГЭ Задание 25 Демонстрационный вариант 2022, математикаСкачать ОГЭ. Задание 24. Геометрическая задача на вычислениеСкачать Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать Урок 3. №23 ОГЭ. Касательная. Окружность с центром на стороне AC касается АВ в точке В.Скачать Геометрия В треугольник ABC вписана окружность радиуса R, касающаяся стороны AC в точке D, причёмСкачать #59. Олимпиадная задача о касательной к окружности!Скачать Демо ОГЭ по математике, задание 26Скачать Найти радиус за 1 минуту!Скачать Задание 24 ОГЭ по математике #2Скачать ЕГЭ Задание 16 Две окружностиСкачать Разбор Задачи №16 из Варианта Ларина №282Скачать №639. Прямая АВ касается окружности с центром О радиуса r в точке В. Найдите АВСкачать Окружность вписанная в треугольник и описанная около треугольника.Скачать |