Высоты в треугольниках ромба

Высота ромба онлайн

С помощю этого онлайн калькулятора ромба можно найти высоту ромба по известным элементам. Для нахождения высоты ромба введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть смотрите ниже.

Открыть онлайн калькулятор

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

1. Высота ромба через сторону и площадь

Пусть задан ромб (Рис.1).

Высоты в треугольниках ромба

Формула площади ромба через сторону и высоту имеет следующий вид:

(small S=a cdot h.)

Откуда легко вывести формулу высоты ромба через сторону и площадь:

(small h=frac.)

Видео:Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать

Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 класс

2. Высота ромба через сторону и угол

Рассмотрим ромб со стороной a и углом α между сторонами (Рис.2). Выведем формулу вычисления высоты ромба через сторону и угол.

Высоты в треугольниках ромба

Проведем высоту AH. Для прямоугольного треугольника AHB применим теорему синусов:

(small frac=frac.)(1)

Откуда получим формулу вычисления высоты ромба через сторону и угол между сторонами:

(small h=a cdot sin alpha.)(2)

Заметим, что формула (2) справедлива для любого угла ромба, как для острого, так и для тупого угла. Действительно. Из четвертого свойста ромба (см. статью Ромб) следует, что сумма соседних углов ромба равна 180°. Тогда для угла C можно записать: (small angle C=180°-alpha.) Следовательно (small sin angle C=sin(180°-alpha)=sin alpha.) Получили, что синусы углов ромба равны. Поэтому в качестве угла между сторонами ромба можно выбрать любой угол ромба.

Видео:Высота ромбаСкачать

Высота ромба

3. Высота ромба через диагонали

Выведем формулу вычисления высоты ромба через диагонали. Плошадь ромба через диагонали вычисляется формулой (см. статью Площадь ромба):

(small S= frac,)(3)

а через сторону и высоту, формулой

(small S= a cdot h.)(4)

Из формул (3) и (4) следует:

(small frac=a cdot h.)(5)

Выразим сторону a ромба через диагонали. Поскольку диагонали ромба перпендикулярны и делятся пополам точкой их пересечения (свойства 5 и 6 ромба), то диагонали делят ромб на четыре равных прямоугольных треугольника (Рис.3).

Высоты в треугольниках ромба

Применим к прямоугольному треугольнику AOB теорему Пифагора:

(small a^2= left( frac right)^2+left( frac right)^2.)(6)
(small a= frac<sqrt> )(7)

Подставим (7) в (5) и найдем h:

(small frac=frac<sqrt> cdot h,)
(small h= frac <sqrt>.)(8)

Видео:Площади фигур. Сохраняй и запоминай!#shortsСкачать

Площади фигур. Сохраняй и запоминай!#shorts

4. Высота ромба через угол и противолежащую диагональ

Пусть известны один из углов α=&angle;ABC ромба и противолежащая диагональ d=AC (Рис.4). Выведем формулу вычисления высоты ромба.

Высоты в треугольниках ромба

Проведем другой диагональ BD. Как было отмечено выше, диагонали ромба разделяют его на четыре равных прямоугольных треугольников. Применим теорему синусов для прямоугольного треугольника AOB:

(small frac=frac<large frac><large sin frac>.)
(small a=frac<large 2 cdot sin frac>.)(9)

С другой стороны (см. параграф 2):

(small h=a cdot sin alpha.)(10)

Подставим (9) в (10):

(small h=frac<large 2 cdot sin frac>.)(11)

Применяя формулу двойного угла для (small sin alpha, ) имеем: (small sin alpha=2 cdot sin frac cdot cos frac . ) Подставляя это равенство в формулу (11), получим формулу высоты ромба через угол и противолежащую диагональ:

(small h=d cdot cos frac.)(12)

Видео:Высоты треугольника.Скачать

Высоты треугольника.

5. Высота ромба через угол и диагональ из данного угла

Пусть известны один из углов α=&angle;ABC ромба и диагональ из данного угла d=BD (Рис.5). Выведем формулу вычисления высоты ромба.

Высоты в треугольниках ромба

Проведем другой диагональ AC. Как было отмечено в выше, диагонали ромба разделяют его на четыре равных прямоугольных треугольников. Для прямоугольного треугольника AOB, имеем:

(small frac =cos angle ABO.)(13)

Учитывая, что ( small BO=frac) и ( small angle ABO=frac), формулу (13) можно записать так:

(small frac< large frac >= cos frac .)
(small a=frac<large 2 cdot cos large frac>.)(14)

Подставим (14) в (2):

(small h= frac<large 2 cdot cos frac> .)

или, учитывая что (small sin alpha=2 cdot sin frac cdot cos frac , ) получим:

(small h= d cdot sin frac.)(15)

Видео:Построение высоты в треугольникеСкачать

Построение высоты в треугольнике

6. Высота ромба через радиус вписанной в ромб окружности

Покажем, что высота ромба через радиус вписанной окружности вычисляется по формуле:

( small h=2cdot r.)

В статье Площадь ромба показали, что площадь ромба через сторону и высоту вычисляется формулой

(small S= a cdot h.)(16)

а площадь ромба через сторону и радиус вписанной окружности − формулой:

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Ромб. Свойства и признаки ромба

Ромб – это параллелограмм, у которого все стороны равны.

Высоты в треугольниках ромба

Если у ромба – прямые углы, то он называется квадратом.

Видео:Площади фигур - треугольника, параллелограмма, трапеции, ромба. Формула Пика и ЕГЭСкачать

Площади фигур - треугольника, параллелограмма, трапеции, ромба. Формула Пика и ЕГЭ

Свойства ромба

1. Поскольку ромб – это параллелограмм, то все свойства параллелограмма верны для ромба.

Помимо этого:

2. Диагонали ромба перпендикулярны.

Высоты в треугольниках ромба

3. Диагонали ромба являются биссектрисами его углов.

Высоты в треугольниках ромба

4. Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4.

Высоты в треугольниках ромба

Видео:Задание 17 ОГЭ по математике. Ромб. Найти высоту ромба.Скачать

Задание 17 ОГЭ по математике. Ромб. Найти высоту ромба.

Признаки ромба

Чтобы параллелограмм Высоты в треугольниках ромбаоказался ромбом, необходимо выполнение одного из следующих условий:

1. Все стороны параллелограмма равны между собой (Высоты в треугольниках ромба).

2. Диагонали пересекаются под прямым углом (Высоты в треугольниках ромба).

3. Диагонали параллелограмма являются биссектрисами его углов.

Видео:КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольникСкачать

КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольник

Площадь ромба

Высоты в треугольниках ромба

Высоты в треугольниках ромба

Высоты в треугольниках ромба

Высоты в треугольниках ромба

Высоты в треугольниках ромба

Высоты в треугольниках ромба

Высоты в треугольниках ромба

Смотрите также таблицу-шпаргалку «Площади простейших фигур» здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:Высота ромбаСкачать

Высота ромба

Ромб. Формулы, признаки и свойства ромба

Высоты в треугольниках ромбаВысоты в треугольниках ромба
Рис.1Рис.2

Видео:Геометрия на ОГЭ — Площадь ромбаСкачать

Геометрия на ОГЭ — Площадь ромба

Признаки ромба

∠BAC = ∠CAD или ∠BDA = ∠BDC

Δ ABO = Δ BCO = Δ CDO = Δ ADO

Видео:ЕГЭ по математике. Базовый уровень. Задание 15. Высота ромбаСкачать

ЕГЭ по математике. Базовый уровень. Задание 15. Высота ромба

Основные свойства ромба

∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC

AC 2 + BD 2 = 4AB 2

Видео:Геометрия 8 класс (Урок№10 - Площадь треугольника.)Скачать

Геометрия 8 класс (Урок№10 - Площадь треугольника.)

Сторона ромба

Формулы определения длины стороны ромба:

1. Формула стороны ромба через площадь и высоту:

a =S
ha

2. Формула стороны ромба через площадь и синус угла:

a =√ S
√ sinα
a =√ S
√ sinβ

3. Формула стороны ромба через площадь и радиус вписанной окружности:

a =S
2 r

4. Формула стороны ромба через две диагонали:

a =√ d 1 2 + d 2 2
2

5. Формула стороны ромба через диагональ и косинус острого угла ( cos α ) или косинус тупого угла ( cos β ):

a =d 1
√ 2 + 2 cosα
a =d 2
√ 2 — 2 cosβ

6. Формула стороны ромба через большую диагональ и половинный угол:

a =d 1
2 cos ( α /2)
a =d 1
2 sin ( β /2)

7. Формула стороны ромба через малую диагональ и половинный угол:

a =d 2
2 cos ( β /2)
a =d 2
2 sin ( α /2)

8. Формула стороны ромба через периметр:

a =Р
4

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Диагонали ромба

Формулы определения длины диагонали ромба:

d 1 = a √ 2 + 2 · cosα

d 1 = a √ 2 — 2 · cosβ

d 2 = a √ 2 + 2 · cosβ

d 2 = a √ 2 — 2 · cosα

d 1 = 2 a · cos ( α /2)

d 1 = 2 a · sin ( β /2)

d 2 = 2 a · sin ( α /2)

d 2 = 2 a · cos ( β /2)

7. Формулы диагоналей через площадь и другую диагональ:

d 1 =2S
d 2
d 2 =2S
d 1

8. Формулы диагоналей через синус половинного угла и радиус вписанной окружности:

d 1 =2 r
sin ( α /2)
d 2 =2 r
sin ( β /2)

Видео:Найти высоту, зная отношение диагоналей и периметр ромбаСкачать

Найти высоту, зная отношение диагоналей и периметр ромба

Периметр ромба

Периметром ромба называется сумма длин всех сторон ромба.

Длину стороны ромба можно найти за формулами указанными выше.

Формула определения длины периметра ромба:

Видео:Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

Площадь ромба

Формулы определения площади ромба:

4. Формула площади ромба через две диагонали:

S =1d 1 d 2
2

5. Формула площади ромба через синус угла и радиус вписанной окружности:

S =4 r 2
sinα

6. Формулы площади через большую диагональ и тангенс острого угла ( tgα ) или малую диагональ и тангенс тупого угла ( tgβ ):

S =1d 1 2 · tg ( α /2)
2
S =1d 2 2 · tg ( β /2)
2

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Окружность вписанная в ромб

Формулы определения радиуса круга вписанного в ромб:

1. Формула радиуса круга вписанного в ромб через высоту ромба:

r =h
2

2. Формула радиуса круга вписанного в ромб через площадь и сторону ромба:

r =S
2 a

3. Формула радиуса круга вписанного в ромб через площадь и синус угла:

r =√ S · sinα
2

4. Формулы радиуса круга вписанного в ромб через сторону и синус любого угла:

r =a · sinα
2
r =a · sinβ
2

5. Формулы радиуса круга вписанного в ромб через диагональ и синус угла:

r =d 1 · sin ( α /2)
2
r =d 2 · sin ( β /2)
2

6. Формула радиуса круга вписанного в ромб через две диагонали:

r =d 1 · d 2
2√ d 1 2 + d 2 2

7. Формула радиуса круга вписанного в ромб через две диагонали и сторону:

r =d 1 · d 2
4 a

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

🔥 Видео

8 класс, 14 урок, Площадь треугольникаСкачать

8 класс, 14 урок, Площадь треугольника

Математика ОГЭ Задание 24 Высота ромбаСкачать

Математика ОГЭ  Задание 24  Высота ромба
Поделиться или сохранить к себе: