Как найти радиус большей окружности если известен радиус меньшей

Как найти радиус окружности

Как найти радиус большей окружности если известен радиус меньшей

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Содержание
  1. Основные понятия
  2. Формула радиуса окружности
  3. Если известна площадь круга
  4. Если известна длина
  5. Если известен диаметр окружности
  6. Если известна диагональ вписанного прямоугольника
  7. Если известна сторона описанного квадрата
  8. Если известны стороны и площадь вписанного треугольника
  9. Если известна площадь и полупериметр описанного треугольника
  10. Если известна площадь сектора и его центральный угол
  11. Если известна сторона вписанного правильного многоугольника
  12. Скачать онлайн таблицу
  13. Нахождение радиуса круга: формула и примеры
  14. Формулы вычисления радиуса круга
  15. 1. Через длину окружности/периметр круга
  16. 2. Через площадь круга
  17. Примеры задач
  18. Как найти радиус большей окружности
  19. Нахождение радиуса круга: формула и примеры
  20. Формулы вычисления радиуса круга
  21. 1. Через длину окружности/периметр круга
  22. 2. Через площадь круга
  23. Примеры задач
  24. Как найти радиус окружности
  25. Основные понятия
  26. Формула радиуса окружности
  27. Если известна площадь круга
  28. Если известна длина
  29. Если известен диаметр окружности
  30. Если известна диагональ вписанного прямоугольника
  31. Если известна сторона описанного квадрата
  32. Если известны стороны и площадь вписанного треугольника
  33. Если известна площадь и полупериметр описанного треугольника
  34. Если известна площадь сектора и его центральный угол
  35. Если известна сторона вписанного правильного многоугольника
  36. Скачать онлайн таблицу
  37. Радиус — что это такое и как найти радиус окружности
  38. Через длину стороны
  39. Найти радиус круга, зная окружность
  40. Радиус и диаметр
  41. Вычисление радиуса
  42. Если известен диаметр
  43. Если известна длина окружности круга
  44. Если известна площадь круга
  45. Способ расчета радиуса круга:
  46. Через сторону описанного квадрата
  47. Как посчитать радиус зная длину окружности
  48. Формула
  49. Свойства радиуса
  50. По площади сектора и центральному углу
  51. Площадь сегмента
  52. Формулы для площади круга и его частей
  53. Центральный угол, вписанный угол и их свойства
  54. Связанные определения
  55. Примеры задач
  56. Длина дуги
  57. Уравнение окружности

Видео:Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shortsСкачать

Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shorts

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Возможно тебе интересно узнать — как найти длину окружности?

Видео:✓ Как найти второй радиус? | Ботай со мной #105 | Борис ТрушинСкачать

✓ Как найти второй радиус? | Ботай со мной #105 | Борис Трушин

Формула радиуса окружности

Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Если известна площадь круга

R = √ S : π, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Видео:Окружность. Как найти Радиус и ДиаметрСкачать

Окружность. Как найти Радиус и Диаметр

Если известна длина

R = P : 2 * π, где P — длина (периметр круга).

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Если известен диаметр окружности

R = D : 2, где D — диаметр.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Видео:КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 класс

Если известна диагональ вписанного прямоугольника

R = d : 2, где d — диагональ.

Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

d = √ a 2 + b 2 , где a, b — стороны вписанного прямоугольника.

Видео:Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Если известна сторона описанного квадрата

R = a : 2, где a — сторона.

Сторона описанного квадрата равна диаметру окружности.

Видео:КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТЕН ДИАМЕТР ИЛИ РАДИУС? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТЕН ДИАМЕТР ИЛИ РАДИУС? Примеры | МАТЕМАТИКА 6 класс

Если известны стороны и площадь вписанного треугольника

R = (a * b * c) : (4 * S), где a, b, с — стороны, S — площадь треугольника.

Видео:Как Найти Радиус Сегмента на Потолке. Радиус Окружности По Хорде И Высоте СегментаСкачать

Как Найти Радиус Сегмента на Потолке. Радиус Окружности По Хорде И Высоте Сегмента

Если известна площадь и полупериметр описанного треугольника

R = S : p, где S — площадь треугольника, p — полупериметр треугольника.

Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

Видео:Решение планиметрических задач повышенного уровня сложностиСкачать

Решение планиметрических задач повышенного уровня сложности

Если известна площадь сектора и его центральный угол

R = √ (360° * S) : (π * α), где S — площадь сектора круга, α — центральный угол.

Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

Видео:Найти центр и радиус окружностиСкачать

Найти центр и радиус окружности

Если известна сторона вписанного правильного многоугольника

R = a : (2 * sin (180 : N)), где a — сторона правильного многоугольника, N — количество сторон.

В правильном многоугольнике все стороны равны.

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Нахождение радиуса круга: формула и примеры

В данной публикации мы рассмотрим, как можно вычислить радиус круга (окружности) и разберем примеры решения задач для закрепления материала.

Видео:Расчет сегмента окружности по хорде и длине цилиндрической поверхности (трансцендентное уравнение)Скачать

Расчет сегмента окружности по хорде и длине цилиндрической поверхности (трансцендентное уравнение)

Формулы вычисления радиуса круга

Как найти радиус большей окружности если известен радиус меньшей

1. Через длину окружности/периметр круга

Радиус круга/окружности рассчитывается по формуле:

Как найти радиус большей окружности если известен радиус меньшей

C – это длина окружности/периметр круга; равняется удвоенному произведению числа π на его радиус:

C = 2 π R

π – число, приближенное значение которого равно 3,14.

2. Через площадь круга

Радиус круга/окружности вычисляется таким образом:

Как найти радиус большей окружности если известен радиус меньшей

S – это площадь круга; равна числу π , умноженному на квадрат его радиуса:

S = π R 2

Видео:+Как найти длину окружностиСкачать

+Как найти длину окружности

Примеры задач

Задание 1
Длина окружности равняется 87,92 см. Найдите ее радиус.

Решение:
Используем первую формулу (через периметр):
Как найти радиус большей окружности если известен радиус меньшей

Задание 2
Найдите радиус круга, если его площадь составляет 254,34 см 2 .

Решение:
Воспользуемся формулой, выраженной через площадь фигуры:
Как найти радиус большей окружности если известен радиус меньшей

Видео:Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

Как найти радиус большей окружности

Видео:8 класс. ОГЭ. Найти диаметр окружностиСкачать

8 класс. ОГЭ. Найти диаметр окружности

Нахождение радиуса круга: формула и примеры

В данной публикации мы рассмотрим, как можно вычислить радиус круга (окружности) и разберем примеры решения задач для закрепления материала.

Видео:Задача по геометрии.Скачать

Задача по геометрии.

Формулы вычисления радиуса круга

Как найти радиус большей окружности если известен радиус меньшей

1. Через длину окружности/периметр круга

Радиус круга/окружности рассчитывается по формуле:

Как найти радиус большей окружности если известен радиус меньшей

C – это длина окружности/периметр круга; равняется удвоенному произведению числа π на его радиус:

C = 2 π R

π – число, приближенное значение которого равно 3,14.

2. Через площадь круга

Радиус круга/окружности вычисляется таким образом:

Как найти радиус большей окружности если известен радиус меньшей

S – это площадь круга; равна числу π , умноженному на квадрат его радиуса:

S = π R 2

Видео:Решение планиметрических задач повышенного уровня сложности.Скачать

Решение планиметрических задач повышенного уровня сложности.

Примеры задач

Задание 1
Длина окружности равняется 87,92 см. Найдите ее радиус.

Решение:
Используем первую формулу (через периметр):
Как найти радиус большей окружности если известен радиус меньшей

Задание 2
Найдите радиус круга, если его площадь составляет 254,34 см 2 .

Решение:
Воспользуемся формулой, выраженной через площадь фигуры:
Как найти радиус большей окружности если известен радиус меньшей

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Как найти радиус окружности

Как найти радиус большей окружности если известен радиус меньшей

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Возможно тебе интересно узнать — как найти длину окружности?

Формула радиуса окружности

Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

Если известна площадь круга

R = √ S : π, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Если известна длина

R = P : 2 * π, где P — длина (периметр круга).

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Если известен диаметр окружности

R = D : 2, где D — диаметр.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Если известна диагональ вписанного прямоугольника

R = d : 2, где d — диагональ.

Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

d = √ a 2 + b 2 , где a, b — стороны вписанного прямоугольника.

Если известна сторона описанного квадрата

R = a : 2, где a — сторона.

Сторона описанного квадрата равна диаметру окружности.

Если известны стороны и площадь вписанного треугольника

R = (a * b * c) : (4 * S), где a, b, с — стороны, S — площадь треугольника.

Если известна площадь и полупериметр описанного треугольника

R = S : p, где S — площадь треугольника, p — полупериметр треугольника.

Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

Если известна площадь сектора и его центральный угол

R = √ (360° * S) : (π * α), где S — площадь сектора круга, α — центральный угол.

Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

Если известна сторона вписанного правильного многоугольника

R = a : (2 * sin (180 : N)), где a — сторона правильного многоугольника, N — количество сторон.

В правильном многоугольнике все стороны равны.

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Радиус — что это такое и как найти радиус окружности

Через длину стороны

Как найти радиус большей окружности если известен радиус меньшей

Формула для нахождения длины окружности через радиус:

, где r — радиус окружности.

Найти радиус круга, зная окружность

Как найти радиус большей окружности если известен радиус меньшейКак найти радиус большей окружности если известен радиус меньшей
Окружность круга PРезультат

Как найти радиус большей окружности если известен радиус меньшей

Радиус и диаметр

Радиус в математике всегда обозначается латинской буквой «R» или «r». Принципиальной разницы, большую букву писать или маленькую, нет.

А два соединенных вместе радиуса, которые к тому же находятся на одной прямой, называются диаметром. Или по-другому:

Диаметр – это отрезок, который проходит через центр окружности и соединяет две противоположные точки на ее поверхности. По аналогии с радиусом под диаметром подразумевают и длину этого отрезка.

Как найти радиус большей окружности если известен радиус меньшей

Обозначается диаметр также первой буквой своего слова – D или d.

Исходя из определения диаметра, можно сделать простой вывод, который одновременно является одной из базовых основ геометрии.

Длина диаметра равна удвоенной длине радиуса.

Как найти радиус большей окружности если известен радиус меньшей

Вычисление радиуса

Радиус можно посчитать разными способами.

Если известен диаметр

Этот способ самый простой. Диаметр равен двум радиусам. Поэтому радиус будет высчитываться по формуле r=d/2.

Если известна длина окружности круга

Также несложно будет узнать радиус, если известна длина окружности круга. Формула для расчета длины окружности C=2πr, в которой C является длиной окружности, π=3,14, а r — это как раз искомый радиус.

Преобразовав данную формулу, получим: r=C/2π. Вообще, число «Пи» в формуле — это постоянное значение, округленное до 3,14. На самом деле «Пи» выглядит так:

Как найти радиус большей окружности если известен радиус меньшей

Означает данное значение отношение длины окружности к диаметру той же окружности.

Если известна площадь круга

Формула площади круга выглядит так: A= π(r²). Эту формулу можно преобразовать в формулу радиуса:

Как найти радиус большей окружности если известен радиус меньшей

В ней A — это площадь круга, число «Пи» мы уже знаем, оно равно округленно 3,14, а r — это и есть искомое значение радиуса.

Как найти радиус круга, все школьники учат на геометрии. Взрослые, конечно, со временем забывают эти формулы. Но, прочитав данную статью, радиус круга может найти каждый: и взрослый, и ребенок.

Способ расчета радиуса круга:

Как найти радиус большей окружности если известен радиус меньшей

Круг (окружность) – геометрическая фигура на плоскости, все точки которой равноудалены от данной точки (центр круга).
Формула радиуса круга: Как найти радиус большей окружности если известен радиус меньшей
где P – длина окружности, pi – число π, равное примерно 3.14

Как найти радиус большей окружности если известен радиус меньшей

Круг (окружность) – геометрическая фигура на плоскости, все точки которой равноудалены от данной точки (центр круга).
Формула радиуса круга: Как найти радиус большей окружности если известен радиус меньшей
где S – площадь круга, pi – число π, равное примерно 3.14

Через сторону описанного квадрата

Сторона описанного квадрата равна диаметру окружности. А диаметр — повторимся — равен двум радиусам. Поэтому разделите сторону квадрата на два.

Как найти радиус большей окружности если известен радиус меньшей

  • r — искомый радиус окружности.
  • a — сторона описанного квадрата.

Как посчитать радиус зная длину окружности

Чему равен радиус (r) если длина окружности C?

Формула

r = C / , где π ≈ 3.14

Свойства радиуса

В отношении радиуса действуют несколько важных правил:

  1. Радиус составляет половину диаметра. Это мы продемонстрировали только что.
  2. У окружности может быть сколько угодно радиусов. Но все они будут равны по длине между собой.

Как найти радиус большей окружности если известен радиус меньшей

Как найти радиус большей окружности если известен радиус меньшей

Радиус, который перпендикулярен хорде, делит ее на две равные части.

Напомним, хордой называется любой отрезок, который проходит через две точки на поверхности окружности, но не через центр. Этим она принципиально отличается от диаметра.

Как найти радиус большей окружности если известен радиус меньшей

По площади сектора и центральному углу

Как найти радиус большей окружности если известен радиус меньшей

Как найти радиус большей окружности если известен радиус меньшей

  • Например, если площадь сектора равна 50 см 2 , а центральный угол равен 120 градусов, формула запишется следующим образом: .

Как найти радиус большей окружности если известен радиус меньшей

Как найти радиус большей окружности если известен радиус меньшей

Как найти радиус большей окружности если известен радиус меньшей

Как найти радиус большей окружности если известен радиус меньшей

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла .

Как найти радиус большей окружности если известен радиус меньшей

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах , получаем

Как найти радиус большей окружности если известен радиус меньшей

Как найти радиус большей окружности если известен радиус меньшей

Как найти радиус большей окружности если известен радиус меньшей

В случае, когда величина α выражена в в радианах , получаем

Как найти радиус большей окружности если известен радиус меньшей

Как найти радиус большей окружности если известен радиус меньшей

Как найти радиус большей окружности если известен радиус меньшей

Формулы для площади круга и его частей

Числовая характеристикаРисунокФормула
Площадь кругаКак найти радиус большей окружности если известен радиус меньшей

Как найти радиус большей окружности если известен радиус меньшей,

где R – радиус круга, D – диаметр круга

Площадь сектораКак найти радиус большей окружности если известен радиус меньшей

Как найти радиус большей окружности если известен радиус меньшей,

если величина угла α выражена в радианах

Как найти радиус большей окружности если известен радиус меньшей,

если величина угла α выражена в градусах

Площадь сегментаКак найти радиус большей окружности если известен радиус меньшей

Как найти радиус большей окружности если известен радиус меньшей,

если величина угла α выражена в радианах

Как найти радиус большей окружности если известен радиус меньшей,

если величина угла α выражена в градусах

Площадь круга
Как найти радиус большей окружности если известен радиус меньшей

Как найти радиус большей окружности если известен радиус меньшей,

где R – радиус круга, D – диаметр круга

Площадь сектораКак найти радиус большей окружности если известен радиус меньшей

Как найти радиус большей окружности если известен радиус меньшей,

если величина угла α выражена в радианах

Как найти радиус большей окружности если известен радиус меньшей,

если величина угла α выражена в градусах

Площадь сегментаКак найти радиус большей окружности если известен радиус меньшей

Как найти радиус большей окружности если известен радиус меньшей,

если величина угла α выражена в радианах

Как найти радиус большей окружности если известен радиус меньшей,

если величина угла α выражена в градусах

Центральный угол, вписанный угол и их свойства

Связанные определения

  • Центральный угол в окружности — это угол , образованный двумя радиусами.
  • Радиус кривизны кривой — это радиус окружности, имеющей с этой кривой касание второго порядка.

Примеры задач

Задание 1
Длина окружности равняется 87,92 см. Найдите ее радиус.

Решение:
Используем первую формулу (через периметр):
Как найти радиус большей окружности если известен радиус меньшей

Задание 2
Найдите радиус круга, если его площадь составляет 254,34 см 2 .

Решение:
Воспользуемся формулой, выраженной через площадь фигуры:
Как найти радиус большей окружности если известен радиус меньшей

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла .

Как найти радиус большей окружности если известен радиус меньшей

В случае, когда величина α выражена в градусах , справедлива пропорция

Как найти радиус большей окружности если известен радиус меньшей

из которой вытекает равенство:

Как найти радиус большей окружности если известен радиус меньшей

В случае, когда величина α выражена в радианах , справедлива пропорция

Как найти радиус большей окружности если известен радиус меньшей

из которой вытекает равенство:

Как найти радиус большей окружности если известен радиус меньшей

Уравнение окружности

r 2 = ( x – a ) 2 + ( y – b ) 2

3. Параметрическое уравнение окружности с радиусом r и центром в точке с координатами ( a, b ) в декартовой системе координат:

Поделиться или сохранить к себе: