Разносторонний прямоугольный треугольник как

Как найти стороны прямоугольного треугольника

Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Онлайн калькулятор

Разносторонний прямоугольный треугольник как

Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • для гипотенузы (с):
    • длины катетов a и b
    • длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
  • для катета:
    • длину гипотенузы (с) и длину одного из катетов
    • длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
    • длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
    • длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)

Введите их в соответствующие поля и получите результат.

Найти гипотенузу (c)

Найти гипотенузу по двум катетам

Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?

Формула

следовательно: c = √ a² + b²

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:

c = √ 3² + 4² = √ 9 + 16 = √ 25 = 5 см

Найти гипотенузу по катету и прилежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:

c = 2 / cos(60) = 2 / 0.5 = 4 см

Найти гипотенузу по катету и противолежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:

c = 2 / sin(30) = 2 / 0.5 = 4 см

Найти гипотенузу по двум углам

Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.

Найти катет

Найти катет по гипотенузе и катету

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:

a = √ 5² — 4² = √ 25 — 16 = √ 9 = 3 см

Найти катет по гипотенузе и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:

b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см

Найти катет по гипотенузе и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:

a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см

Найти катет по второму катету и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:

b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см

Найти катет по второму катету и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:

Видео:32. Остроугольный, прямоугольный и тупоугольный треугольникиСкачать

32. Остроугольный, прямоугольный и тупоугольный треугольники

Прямоугольный треугольник

Прямоугольный треугольник – треугольник, в котором один угол прямой (то есть равен 90˚).

Сторона, противоположная прямому углу, называется гипотенузой прямоугольного треугольника.

Стороны, прилежащие к прямому углу, называются катетами .

Разносторонний прямоугольный треугольник как

Признаки равенства прямоугольных треугольников

Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны ( по двум катетам ).

Разносторонний прямоугольный треугольник как

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны ( по катету и острому углу ).

Разносторонний прямоугольный треугольник какЕсли гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и острому углу ).

Разносторонний прямоугольный треугольник как

Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и катету ).

Разносторонний прямоугольный треугольник как

Свойства прямоугольного треугольника

1. Сумма острых углов прямоугольного треугольника равна 90˚.

2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.

И обратно, если в треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.

Разносторонний прямоугольный треугольник как

3. Теорема Пифагора:

Разносторонний прямоугольный треугольник как, где Разносторонний прямоугольный треугольник как– катеты, Разносторонний прямоугольный треугольник как– гипотенуза. Видеодоказательство

Разносторонний прямоугольный треугольник как

4. Площадь Разносторонний прямоугольный треугольник какпрямоугольного треугольника с катетами Разносторонний прямоугольный треугольник как:

Разносторонний прямоугольный треугольник как

5. Высота Разносторонний прямоугольный треугольник какпрямоугольного треугольника, проведенная к гипотенузе выражается через катеты Разносторонний прямоугольный треугольник каки гипотенузу Разносторонний прямоугольный треугольник какследующим образом:

Разносторонний прямоугольный треугольник как

Разносторонний прямоугольный треугольник как

6. Центр описанной окружности – есть середина гипотенузы.

Разносторонний прямоугольный треугольник как

7. Радиус Разносторонний прямоугольный треугольник какописанной окружности есть половина гипотенузы Разносторонний прямоугольный треугольник как:

Разносторонний прямоугольный треугольник как

8. Медиана, проведенная к гипотенузе, равна ее половине

9. Радиус Разносторонний прямоугольный треугольник каквписанной окружности выражается через катеты Разносторонний прямоугольный треугольник каки гипотенузу Разносторонний прямоугольный треугольник какследующим образом:

Разносторонний прямоугольный треугольник как

Разносторонний прямоугольный треугольник как

Тригонометрические соотношения в прямоугольном треугольнике смотрите здесь.

Видео:7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольникиСкачать

7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольники

Виды треугольников

Треугольники различаются между собой по характеру углов и по характеру сторон.

Видео:Виды треугольников: остроугольный, прямоугольный ,тупоугольный. Как начертить треугольникСкачать

Виды треугольников: остроугольный, прямоугольный ,тупоугольный. Как начертить треугольник

Виды треугольников по углам

  1. Остроугольный треугольник – это треугольник, у которого все углы острые, то есть меньше 90°.
  2. Прямоугольный треугольник – это треугольник, у которого один из углов является прямым, то есть равен 90°.

Стороны, образующие прямой угол называются катетами, а сторона, лежащая напротив прямого угла, называется гипотенузой.

  • Тупоугольный треугольник – это треугольник, у которого один из углов является тупым, то есть больше 90°.
  • Разносторонний прямоугольный треугольник как

    Видео:Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать

    Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)

    Виды треугольников по сторонам

    1. Разносторонний треугольник – это треугольник, у которого все стороны имеют разную длину.
    2. Равнобедренный треугольник – это треугольник, у которого две стороны равны между собой.

    Равные стороны называются боковыми сторона треугольника, а третья сторона, не равная двум другим, называется его основанием.

  • Равносторонний треугольник – это треугольник, у которого все три стороны равны, то есть имеют одинаковую длину.
  • 🔍 Видео

    Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

    Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

    Нахождение стороны прямоугольного треугольникаСкачать

    Нахождение стороны прямоугольного треугольника

    Площадь треугольника. Как найти площадь треугольника?Скачать

    Площадь треугольника. Как найти площадь треугольника?

    Решение прямоугольных треугольниковСкачать

    Решение прямоугольных треугольников

    Виды треугольниковСкачать

    Виды треугольников

    Как построить равнобедренный или равносторонний треугольник по клеткам.Скачать

    Как построить равнобедренный или равносторонний треугольник по клеткам.

    Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !Скачать

    Всё про прямоугольный треугольник за 15 минут | Осторожно, спойлер! | Борис Трушин !

    Треугольники: остро-, тупо- и прямоугольныеСкачать

    Треугольники: остро-, тупо- и прямоугольные

    ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК §17 геометрия 7 классСкачать

    ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК §17 геометрия 7 класс

    Свойства прямоугольного треугольника. Практическая часть. 7 класс.Скачать

    Свойства прямоугольного треугольника. Практическая часть.  7 класс.

    КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрияСкачать

    КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрия

    Лекция 1. Точка на прямой. Метод прямоугольного треугольникаСкачать

    Лекция 1. Точка на прямой. Метод прямоугольного треугольника

    Решение прямоугольных треугольников. Практическая часть. 8 класс.Скачать

    Решение прямоугольных треугольников. Практическая часть. 8 класс.

    Геометрия 7 класс (Урок№9 - Треугольник.)Скачать

    Геометрия 7 класс (Урок№9 - Треугольник.)

    7 класс, 35 урок, Некоторые свойства прямоугольных треугольниковСкачать

    7 класс, 35 урок, Некоторые свойства прямоугольных треугольников
    Поделиться или сохранить к себе: