Если центр окружности лежит на стороне треугольника то треугольник прямоугольный

Свойства прямоугольного треугольника

Если центр окружности лежит на стороне треугольника то треугольник прямоугольный

Треугольник, у которого один из углов равен 90°, называют прямоугольным треугольником. Сторону, лежащую против угла в 90°, называют гипотенузой , две другие стороны называют катетами .

Катеты прямоугольного треугольника

Длины катетов прямоугольного треугольника меньше длины гипотенузы.

Если центр окружности лежит на стороне треугольника то треугольник прямоугольный

Равнобедренным прямоугольным треугольником называют такой прямоугольный треугольник, у которого равны катеты.
Острые углы равнобедренного прямоугольного треугольника равны 45°.

Если центр окружности лежит на стороне треугольника то треугольник прямоугольный

Катет прямоугольного треугольника, лежащий против угла в 30° , равен половине гипотенузы.

Катет, равный половине гипотенузы

Если в прямоугольном треугольнике один из катетов равен половине гипотенузы, то этот катет лежит против угла в 30° .

Медиана, проведённая к гипотенузе прямоугольного треугольника

Если центр окружности лежит на стороне треугольника то треугольник прямоугольный

Медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы.

Медиана треугольника, равная половине стороны, к которой она проведена

Если в треугольнике медиана равна половине стороны, к которой она проведена, то такой треугольник является прямоугольным.

Если центр окружности лежит на стороне треугольника то треугольник прямоугольный

Середина гипотенузы прямоугольного треугольника является центром описанной около него окружности.

Если в треугольнике центр описанной окружности лежит на одной из сторон, то этот треугольник является прямоугольным треугольником, а центр описанной окружности совпадает с серединой гипотенузы.

Если центр окружности лежит на стороне треугольника то треугольник прямоугольный

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов

Обратная теорема Пифагора

Если в треугольнике квадрат одной стороны равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным

ФигураРисунокФормулировка
Прямоугольный треугольник
Равнобедренный прямоугольный треугольник
Прямоугольный треугольник с углом в 30°

Если центр окружности лежит на стороне треугольника то треугольник прямоугольный

Определение прямоугольного треугольника:

Треугольник, у которого один из углов равен 90° , называют прямоугольным треугольником .

Сторону, лежащую против угла в 90° , называют гипотенузой , две другие стороны называют катетами .

Свойство катетов прямоугольного треугольника:

Длины катетов прямоугольного треугольника меньше длины гипотенузы.

Прямоугольный треугольник
Равнобедренный прямоугольный треугольник
Если центр окружности лежит на стороне треугольника то треугольник прямоугольный

Определение равнобедренного прямоугольного треугольника:

Равнобедренным прямоугольным треугольником называют такой прямоугольный треугольник, у которого равны катеты.

Свойство углов прямоугольного треугольника:

Острые углы равнобедренного прямоугольного треугольника равны 45° .

Прямоугольный треугольник с углом в 30°
Если центр окружности лежит на стороне треугольника то треугольник прямоугольный

Свойство прямоугольного треугольника с углом в 30° :

Катет прямоугольного треугольника, лежащий против угла в 30° , равен половине гипотенузы.

Признак прямоугольного треугольника с углом в 30° :

Если в прямоугольном треугольнике один из катетов равен половине гипотенузы, то этот катет лежит против угла в 30° .

Медиана, проведённая к гипотенузе прямоугольного треугольника
Если центр окружности лежит на стороне треугольника то треугольник прямоугольный

Свойство медианы, проведенной к гипотенузе прямоугольного треугольника:

Медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы.

Признак прямоугольного треугольника:

Если в треугольнике медиана равна половине стороны, к которой она проведена, то такой треугольник является прямоугольным.

Центр описанной окружности
Если центр окружности лежит на стороне треугольника то треугольник прямоугольный

Свойство окружности, описанной около прямоугольного треугольника:

Середина гипотенузы прямоугольного треугольника является центром описанной около него окружности.

Признак прямоугольного треугольника:

Если в треугольнике центр описанной окружности лежит на одной из сторон, то этот треугольник является прямоугольным треугольником, а центр описанной окружности совпадает с серединой гипотенузы.

Если центр окружности лежит на стороне треугольника то треугольник прямоугольный

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов

Обратная теорема Пифагора:

Если в треугольнике квадрат одной стороны равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Прямоугольный треугольник: Признаки Равенства и Подобия

Видео:ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

Определение

Прямоугольный треугольник — это треугольник, в котором один из углов прямой.

Гипотенуза в прямоугольном треугольнике — это сторона напротив прямого угла.


Катет в прямоугольном треугольнике
— это две стороны прилежащие к прямому углу.

Если центр окружности лежит на стороне треугольника то треугольник прямоугольный

Видео:2038 центр окружности описанной около треугольника ABC лежит на стороне ABСкачать

2038 центр окружности описанной около треугольника ABC лежит на стороне AB

Свойства прямоугольного треугольника

В прямоугольном треугольнике:

  1. Сумма острых углов 90˚.
  2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.
  3. Медиана, проведенная к гипотенузе, равна ее половине.
  4. Центр описанной окружности — середина гипотенузы.
    Если центр окружности лежит на стороне треугольника то треугольник прямоугольный

Формулы:

  1. Площадь прямоугольного треугольника равна
    половине произведения катетов:
    Если центр окружности лежит на стороне треугольника то треугольник прямоугольный
  2. Радиус описанной окружности около прямоугольного
    треугольника равен половине гипотенузы:
    Если центр окружности лежит на стороне треугольника то треугольник прямоугольный
  3. Радиус вписанной окружности в прямоугольный треугольник
    выражается следующим образом:
    Если центр окружности лежит на стороне треугольника то треугольник прямоугольный
  4. Квадрат гипотенузы равен сумме квадратов катетов:

Если центр окружности лежит на стороне треугольника то треугольник прямоугольный

Видео:Центр окружности, описанной около треуг ABC лежит на стороне AB Радиус равен 25 Найти AC если BC=48Скачать

Центр окружности, описанной около треуг ABC лежит на стороне AB Радиус равен 25 Найти AC если BC=48

Признаки равенства прямоугольных треугольников

С помощью признаков равенства прямоугольных треугольников
можно доказать что прямоугольные треугольники равны.

  1. По двум катетам:
    Если два катета одного прямоугольного треугольника соответственно
    равны двум катетам другого прямоугольного треугольника,
    то такие треугольники равны.
    Если центр окружности лежит на стороне треугольника то треугольник прямоугольный
  2. По катету и гипотенузе:
    Если катет и гипотенуза одного прямоугольного треугольника соответственно
    равны катету и гипотенузе другого прямоугольного треугольника,
    то такие треугольники равны.
    Если центр окружности лежит на стороне треугольника то треугольник прямоугольный
  3. По гипотенузе и острому углу:
    Если гипотенуза и острый угол одного прямоугольного треугольника соответственно
    равны гипотенузе и острому углу другого прямоугольного треугольника,
    то такие треугольникиравны.
    Если центр окружности лежит на стороне треугольника то треугольник прямоугольный
  4. По катету и острому углу:
    Если катет и острый угол одного прямоугольного треугольника соответственно
    равны катету и острому углу другого прямоугольного треугольника,
    то такие треугольники равны.

Если центр окружности лежит на стороне треугольника то треугольник прямоугольный

Видео:Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 классСкачать

Профильный ЕГЭ 2024. Задача 1. Прямоугольный треугольник. 10 класс

Признаки прямоугольного треугольника

С помощью признаков прямоугольного треугольника можно
доказать, что треугольник прямоугольный.

  1. По теореме Пифагора:
    Если квадрат стороны равен сумме квадратов двух других сторон,
    то треугольник прямоугольный.
  2. По центру описанной окружности:
    Если центр описанной окружности лежит на стороне треугольника,
    то треугольник прямоугольный.
  3. По медиане:
    Если медиана треугольника равна половине стороны, к которой она проведена,
    то треугольник прямоугольный.
  4. По площади:
    Если площадь треугольника равна половине произведения двух его сторон,
    то треугольник прямоугольный.
  5. По радиусу описанной окружности:
    Если радиус описанной окружности равен половине,
    то треугольник прямоугольный.

Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Признаки подобия прямоугольных треугольников

С помощью признаков подобия прямоугольных треугольников можно
доказать, что прямоугольные треугольники подобны.

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Если центр описанной окружности лежит на стороне треугольника

Если центр описанной около треугольника окружности лежит на стороне треугольника, то этот треугольник — прямоугольный.

Сторона, на которой лежит центр описанной окружности, является гипотенузой.

Если центр окружности лежит на стороне треугольника то треугольник прямоугольныйДано : ∆ABC, окружность (O: R) — описанная, O∈AB

Доказать : ∆ABC — прямоугольный,

AB — хорда проходящая через центр окружности. Значит, AB — диаметр.

Значит, треугольник ABC — прямоугольный, AB — гипотенуза.

Что и требовалось доказать .

Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 20. Найти AC, если BC=32.

Если центр окружности лежит на стороне треугольника то треугольник прямоугольныйДано : ∆ABC, окружность (O: R) — описанная, O∈AB, R=20, BC=32

Так как центр описанной около треугольника окружности ABC окружности лежит на стороне AB, то ABC — прямоугольный треугольник с гипотенузой AB.

📽️ Видео

Геометрия. Теорема Пифагора. ОГЭ по математике. Задание 16Скачать

Геометрия. Теорема Пифагора. ОГЭ по математике. Задание 16

15 задание треугольники огэ по математике / маттаймСкачать

15 задание треугольники огэ по математике / маттайм

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Задача№25 ОГЭ Точка M и N лежат на стороне АС. Найдите радиус окружности, если cos ВАС ...Скачать

Задача№25 ОГЭ Точка M и  N лежат на стороне АС. Найдите радиус окружности, если cos ВАС ...

16 задание ОГЭ 2023 Окружность Треугольник #Shorts #огэпоматематике2023 #геометрия #окружностьСкачать

16 задание  ОГЭ 2023 Окружность  Треугольник  #Shorts #огэпоматематике2023 #геометрия #окружность

найти угол треугольника вписанного в окружность с центром на сторонеСкачать

найти угол треугольника вписанного в окружность с центром на стороне

✓ Квадрат вписан в прямоугольный треугольник | Ботай со мной #129 | Борис ТрушинСкачать

✓ Квадрат вписан в прямоугольный треугольник | Ботай со мной #129 | Борис Трушин

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математике

Задания с окружностью, тестовая часть ОГЭ (2 серия)Скачать

Задания с окружностью, тестовая часть ОГЭ (2 серия)

Вершины K и L квадрата KLMN с центром O лежат на стороне AB треугольника ABC.Скачать

Вершины K и L квадрата KLMN с центром O лежат на стороне AB треугольника ABC.

Урок 3. №23 ОГЭ. Касательная. Окружность с центром на стороне AC касается АВ в точке В.Скачать

Урок 3. №23 ОГЭ. Касательная. Окружность с центром на стороне AC касается АВ в точке В.

Пересечение биссектрис треугольника в одной точке, Геометрия 7 классСкачать

Пересечение биссектрис треугольника в одной точке,  Геометрия 7 класс

ОГЭ 2021 задание №17 окружностьСкачать

ОГЭ 2021  задание №17 окружность
Поделиться или сохранить к себе: