Около остроугольного треугольника ABC с различными сторонами описали окружность с диаметром BN. Высота BH пересекает эту окружность в точке K.
а) Докажите, что
б) Найдите KN, если а радиус окружности равен 12.
a) Равные дуги стягивают равны хорды; вписанные углы, опирающиеся на равные дуги, равны. Поэтому достаточно доказать, что Пусть угол КВС равен α. Сумма острых углов прямоугольного треугольника BНC равна 90°, поэтому Центральный угол ВОА в два раза больше вписанного угла ВСА, опирающегося на ту же дугу АВ, поэтому Наконец, треугольник BОА равнобедренный, поскольку AO = OB как радиусы окружности, поэтому каждый из равных углов при его основании АВ равен Итак, поэтому Требуемое доказано.
б) Заметим, что Тогда:
Далее, как угол, опирающийся на диаметр. Диаметр равен удвоенному радиусу: Тогда как катет, лежащий против угла в 30° в прямоугольном треугольнике BKN.
Ответ:
Примечание Евгения Обухова (Москва).
Пункт а) это известный факт о том, что при изогональном сопряжении ортоцентр переходит в центр описанной окружности.
Примечание Дмитрия Гущина.
Ученик, занимающийся в математическом кружке или посещающий факультатив по математике, узнает в задаче стандартную конструкцию: радиус описанной окружности и высоту, проведенные из одной вершины треугольника. Эти отрезки переходят друг в друга при симметрии относительно биссектрисы треугольника, исходящей из той же вершины. Поскольку при такой симметрии стороны угла также переходят в друг друга, угол КВС переходит в угол ABN. Отсюда и следует равенство хорд AN и СК.
Прямые, проходящие через вершину угла и симметричные относительно биссектрисы этого угла, называются изогональными. Материалы для занятия со школьниками по данной теме можно взять, например, в статье Д. Прокопенко «Изогональное сопряжение и педальные треугольники».
Критерии оценивания выполнения задания | Баллы |
---|---|
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
Получен обоснованный ответ в пункте б) имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
Имеется верное доказательство утверждения пункта а) при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, Содержание Видео:найти радиус окружности, описанной вокруг треугольникаСкачать Репетитор по математикеМеня зовут Виктор Андреевич, — я репетитор по математике . Последние десять лет я занимаюсь только преподаванием. Я не «натаскиваю» своих учеников. Моя цель — помочь ребенку понять предмет, научить его мыслить, а не применять шаблоны, передать свои знания, а не просто «добиться результата». Предусмотрен дистанционный формат занятий (через Skype или Zoom). На первом же уроке оцениваем уровень подготовки ребенка. Если ребенка устраивает моя подача материала, то принимаем решение о дальнейшем сотрудничестве — составляем расписание и индивидуальный план работы. После каждого занятия дается домашнее задание — оно всегда обязательно для выполнения. [в личном кабинете родители могут контролировать успеваемость ребенка] Стоимость занятийНабор на 2020/2021 учебный год открыт. Предусмотрен дистанционный формат. Видеокурсы подготовки к ЕГЭ-2021Решения авторские, то есть мои (автор ютуб-канала mrMathlesson — Виктор Осипов). На видео подробно разобраны все задания. Теория представлена в виде лекционного курса, для понимания методик, которые используются при решении заданий. Видео:№705. Около прямоугольного треугольника ABC с прямым углом С описана окружность. Найдите радиусСкачать Группа ВконтактеВ группу выкладываются самые свежие решения и разборы задач. Подпишитесь, чтобы быть в курсе и получать помощь от других участников. Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать ПреимуществаПедагогический стажСейчас существует много сайтов, где вам подберут репетитора по цене/опыту/возрасту, в зависимости от желаний. Но большинство анкет там принадлежат либо студентам, либо школьным учителям. Для них репетиторство — дополнительный временный заработок, из этого формируется отношение к деятельности. У студентов нет опыта и желания совершенствоваться, у школьных учителей — нет времени и сил после основной деятельности. Я занимаюсь только репетиторством с 2010 года. Все свои силы и знания трачу на совершенствование только в этой области. Собственная методикаЗа время работы я накопил огромное количество материала для подготовки к итоговым экзаменам. Ребенку не будет даваться неадаптированная школьная программа. С каждым я разберу поэтапно специфичные примеры, темы, способы решений, необходимые для успешной сдачи ЕГЭ и ОГЭ. При этом это не будет «натаскиванием» на решение конкретных задач, но полноценная структурированная подготовка. Естественно, если таковые найдутся, устраню «пробелы» и в школьной программе. Гарантированный результатЗа время моей работы не было ни одного случая, где не прослеживалась бы четкая тенденция к улучшению знаний у ученика. Ни один откровенно не «завалил» экзамен. Каждый вырос в «понимании» математики в сравнении со своим первоначальным уровнем. Естественно, я не могу гарантировать, что двоечник за полгода подготовится на твердую «пять». Но могу с уверенностью сказать, что я подготовлю ребенка на его максимально возможный уровень за то время, что осталось до экзамена. Индивидуальная работаВсе дети разные, поэтому способ и форма объяснения корректируются в зависимости от уровня понимания ребенком предмета. Индивидуальная работа с каждым учеником — каждому даются отдельные задания, теоретический материал. Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать Около остроугольного треугольника авс описана окружность с диаметром bnБАЗА ЗАДАНИЙ Задание № 16. Планиметрия с доказательством. 1. Прямая, проходящая через вершину B прямоугольника ABCD перпендикулярно диагонали AC, пересекает сторону AD в точке M, равноудалённой от вершин B и D. 2. К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно. 3. Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC=CD. 4. В треугольнике ABC точки A 1 , B 1 , C 1 — середины сторон BC, AC и A B соответственно, AH— высота, ∠BAC = 60°, ∠BCA = 45°. 5. Две окружности касаются внутренним образом в точке A, причём меньшая проходит через центр большей. Хорда BC большей окружности касается меньшей в точке P. Хорды AB и AC пересекают меньшую окружность в точках K и M соответственно. 6. Две окружности касаются внутренним образом в точке A, причём меньшая окружность проходит через центр O большей. Диаметр BC большей окружности вторично пересекает меньшую окружность в точке M, отличной от A. Лучи AO и AM вторично пересекают большую окружность в точках P и Q соответственно. Точка C лежит на дуге AQ большей окружности, не содержащей точку P. 7. Две окружности касаются внутренним образом в точке K, причём меньшая проходит через центр большей. Хорда MN большей окружности касается меньшей в точке C. Хорды KM и KN пересекают меньшую окружность в точках A и B соответственно, а отрезки KC и AB пересекаются в точке L. 8. Дан прямоугольный треугольник ABC с прямым углом C. На катете AC взята точка M. Окружность с центром O и диаметром CM касается гипотенузы в точке N. 9. Точка B лежит на отрезке AC. Прямая, проходящая через точку A, касается окружности с диаметром BC в точке M и второй раз пересекает окружность с диаметром AB в точке K. Продолжение отрезка MB пересекает окружность с диаметром AB в точке D. 10. Точка M лежит на стороне BC выпуклого четырёхугольника ABCD, причём B и C — вершины равнобедренных треугольников с основаниями AM и DM соответственно, а прямые AM и MD перпендикулярны. 11. В равнобедренном тупоугольном треугольнике ABC на продолжение боковой стороны BC опущена высота AH. Из точки H на сторону AB и основание AC опущены перпендикуляры HK и HM соответственно. 12. Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр вписанной в него окружности, H — точка пересечения высот. Известно, что ∠BAC = ∠OBC+∠OCB. 13. Точки P, Q, W делят стороны выпуклого четырёхугольника ABCD в отношении AP:PB = CQ:QB = CW:WD = 3:4, радиус окружности, описанной около треугольника PQW, равен 10, PQ = 16, QW = 12, угол PWQ— острый. 14. Окружность проходит через вершины В и С треугольника АВС и пересекает АВ и АС в точках C 1 , B 1 соответственно. 15. Дана трапеция ABCD с основаниями AD и BC. Диагональ BD разбивает её на два равнобедренных треугольника с основаниями AD и CD. 16. В прямоугольном треугольнике АВС с прямым углом С точки М и N – середины катетов АС и ВС соответственно, СН – высота. 17. В треугольнике АВС угол АВС равен 60°. Окружность, вписанная в треугольник, касается стороны AC в точке M. 18. В треугольнике АВС проведены высоты АК и СМ. На них из точек М и К опущены перпендикуляры МЕ и КН соответственно. 19. Окружность, вписанная в треугольник KLM, касается сторон KL, LM, MK в точках A, B и C соответственно. б) Найдите отношение LB:BM, если известно, что KC:CM = 3:2 и ∠ MKL = 60. 20. Дана равнобедренная трапеция ABCD с основаниями AD и BC. Окружность с центром O, построенная на боковой стороне AB как на диаметре, касается боковой стороны CD и второй раз пересекает большее основание AD в точке H, точка Q — середина CD. 21. Квадрат ABCD вписан в окружность. Хорда CE пересекает его диагональ BD в точке K. 22. В прямоугольном треугольнике ABC точки M и N – середины гипотенузы AB и катета BC соответственно. Биссектриса ∠ BAC пересекает прямую MN в точке L 23. Окружность касается стороны AC остроугольного треугольника ABC и делит каждую из сторон AB и BC на три равные части. 24. На катетах AC и BC прямоугольного треугольника ABC как на диаметрах построены окружности, второй раз пересекающиеся в точке M. Точка Q лежит на меньшей дуге MB окружности с диаметром BC. Прямая CQ второй раз пересекает окружность с диаметром AC в точке P. 25. Окружность, построенная на медиане BM равнобедренного треугольника ABC как на диаметре, второй раз пересекает основание BC в точке K. 26. В прямоугольной трапеции ABCD с прямым углом при вершине A расположены две окружности. Одна из них касается боковых сторон и большего основания AD, вторая – боковых сторон, меньшего основания BC и первой окружности. 27. В трапецию ABCD с основаниями AD и BC вписана окружность с центром O. 28. Дана трапеция с диагоналями равными 8 и 15. Сумма оснований равна 17. 🔥 Видео2031 окружность центром в точке О описана около равнобедренного треугольника ABCСкачать Построить описанную окружность (Задача 1)Скачать 2038 центр окружности описанной около треугольника ABC лежит на стороне ABСкачать ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать Геометрия Радиус окружности описанной около треугольника ABC равен 6 см Найдите радиус окружностиСкачать Задача 6 №27922 ЕГЭ по математике. Урок 139Скачать Нафиг теорему синусов 3 задание проф. ЕГЭ по математике (часть I)Скачать Вписанная и описанная около равнобедренного треугольника, окружностьСкачать Радиус описанной окружностиСкачать Задание 26 Нахождение радиуса окружности описанной около треугольникаСкачать Задача 6 №27900 ЕГЭ по математике. Урок 128Скачать ЕГЭ Задание 16 Описанная окружностьСкачать М - Планиметрия - Окружности, связанные с треугольником и четырёхугольникомСкачать Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольникиСкачать Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать Окружность с центром на стороне AС треугольника ABC проходит через вершину С и касается прямой AB вСкачать |