Так как все образующие конуса равны, то его осевым сечением является равнобедренный треугольник, боковыми сторонами которого являются образующие конуса, а основанием — диаметр конуса. При этом все осевые сечения конуса — равные равнобедренные треугольники . На рисунке 168 осевым сечением конуса является треугольник ABP ( АР = ВР ). Угол АPВ называют углом при вершине осевого сечения конуса .
Конус, в осевом сечении которого правильный треугольник, называется равносторонним конусом.
Если секущая плоскость проходит через вершину конуса, пересекает конус, но не проходит через его ось, то в сечении конуса также получается равнобедренный треугольник (см. рис. 168: △ DCP ).
Так как конус — тело вращения, то любое сечение конуса плоскостью, перпендикулярной его оси (т. е. параллельной основанию конуса), есть круг, а сечение боковой поверхности конуса такой плоскостью — окружность этого круга; центром круга (окружности) является точка пересечения оси конуса и секущей плоскости (рис. 169).
Если секущая плоскость не параллельна плоскости основания конуса и не пересекает основание, то сечением боковой поверхности конуса такой плоскостью является эллипс (рис. 170). Поэтому эллипс называют коническим сечением .
Если сечением цилиндрической поверхности плоскостью может быть либо окружность, либо эллипс, либо две параллельные прямые, то сечением конической поверхности плоскостью может быть либо окружность (секущая плоскость перпендикулярна оси конической поверхности вращения и не проходит через её вершину, рис. 171, a ), либо эллипс (секущая плоскость не перпендикулярна оси конической поверхности и пересекает все её образующие, рис. 171, б ), либо парабола (секущая плоскость параллельна только одной образующей конической поверхности, рис. 171, в ), либо гипербола (секущая плоскость параллельна оси конической поверхности, рис. 171, г ), либо пара пересекающихся прямых (секущая плоскость проходит через вершину конической поверхности, рис. 171, д ). Поэтому невырожденные кривые второго порядка — окружность, эллипс, параболу и гиперболу называют коническими сечениями или коротко — кониками .
О конических сечениях можно прочитать в очерках «Элементарная геометрия», «Проективная геометрия» в конце этой книги.
ЗАДАЧА (3.047). Высота конуса равна радиусу R его основания. Через вершину конуса проведена плоскость, отсекающая от окружности основания дугу: а) в 60 ° ; б) в 90 ° . Найти площадь сечения.
Решени е. Рассмотрим случай а). Пусть плоскость α пересекает поверхность конуса с вершиной Р по образующим РА и РВ (рис. 172); △ АВР — искомое сечение. Найдём площадь этого сечения.
Хорда АВ окружности основания стягивает дугу в 60 ° , значит, △ AOB — правильный и АВ = R .
Если точка С — середина стороны АB, то отрезок PC — высота треугольника АВР. Поэтому S △ ABP = АВ • РC. Имеем: ОР = R (по условию); в △ A OB : ОС = ; в △ ОСР : CP = = .
Тогда S △ ABP = АВ • РС = .
Ответ: а) .
18.3. Касательная плоскость к конусу
Определение. Касательной плоскостью к конусу называется плоскость, проходящая через образующую конуса перпендикулярно осевому сечению, проведённому через эту образующую.
Говорят, что плоскость α касается конуса по образующей РА (рис. 173): каждая точка образующей РА является точкой касания плоскости α и данного конуса.
Через любую точку боковой поверхности конуса проходит только одна его образующая. Через эту образующую можно провести только одно осевое сечение и только одну плоскость, перпендикулярную плоскости этого осевого сечения. Следовательно, через каждую точку боковой поверхности конуса можно провести лишь одну плоскость, касательную к данному конусу в этой точке.
18.4. Изображение конуса
Для изображения конуса достаточно построить: 1) эллипс, изображающий окружность основания конуса (рис. 174); 2) центр О этого эллипса; 3) отрезок ОР, изображающий высоту конуса; 4) касательные прямые РА и PB из точки Р к эллипсу (их проводят с помощью линейки на глаз).
Для достижения наглядности изображения невидимые линии изображают штрихами.
Необходимо заметить, что отрезок АВ, соединяющий точки касания образующих и окружности основания конуса, ни в коем случае не является диаметром основания конуса, т. е. этот отрезок не содержит центра О эллипса. Следовательно, △ АBP — не осевое сечение конуса. Осевым сечением конуса является △ ACP, где отрезок AC проходит через точку О, но образующая PC не является касательной к окружности основания.
18.5. Развёртка и площадь поверхности конуса
Пусть l — длина образующей, R — радиус основания конуса с вершиной Р .
Поверхность конуса состоит из боковой поверхности конуса и его основания. Если эту поверхность разрезать по одной из образующих, например по образующей PA (рис. 175), и по окружности основания, затем боковую поверхность конуса развернуть на плоскости (рис. 176, a ), то получим развёртку поверхности конуса (рис. 176, б ), состоящую из: а) кругового сектора, радиус которого равен образующей l конуса, а длина дуги сектора равна длине окружности основания конуса; б) круга, радиус которого равен радиусу R основания конуса. Угол сектора развёртки боковой поверхности конуса называют углом развёртки конуса ; его численная величина равна отношению длины окружности основания конуса к его образующей (радиусу сектора развёртки):
α = .
За площадь боковой поверхности конуса принимается площадь её развёртки. Выразим площадь боковой поверхности конуса через длину l его образующей и радиус R основания.
Площадь боковой поверхности — площадь кругового сектора радиуса длины l — вычисляется по формуле
S бок = α • l 2 , (1)
где α — величина угла (в радианах) сектора — развёртки. Учитывая, что α = , получаем:
Таким образом, доказана следующая теорема.
Теорема 27. Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую. ▼
Площадь полной поверхности конуса равна сумме площадей его боковой поверхности и основания, т. е.
S кон = π Rl + π R 2 . (3)
Следствие. Пусть конус образован вращением пря м оугольного треугольника ABC вокруг катета АС (рис. 177). Тогда S бок = π • BC • АВ. Если D — середина отрезка АВ, то AB = 2 AD, поэтому
S бок = 2 π ВС • AD. (4)
Проведём DE ⟂ АB ( E ∈ l = AС ) . Из подобия прямоугольных треугольников ADE и ACB (у них общий угол А ) имеем
= ⇒ BC • AD = DE • АС. (5)
Тогда соотношение (4) принимает вид
S бок = (2 π • DE ) • AC, (6)
т. е. площадь боковой поверхности конуса равна произведению высоты конуса на длину окружности, радиус которой равен длине серединного перпендикуляра, проведённого из точки на оси конуса к его образующей.
Это следствие будет использовано в п. 19.7.
18.6. Свойства параллельных сечений конуса
Теоремa 28. Если конус пересечён плоскостью, параллельной основанию, то: 1) все образующие и высота конуса делятся этой плоскостью на пропорциональные части; 2) в сечении получается круг; 3) площади сечения и основания относятся, как квадраты их расстояний от вершины.
Доказательств о. 1) Пусть конус с вершиной Р и основанием F пересечён плоскостью α , параллельной плоскости β основания конуса и расположенной между Р и β (рис. 178).
Проведём высоту РО конуса, где точка О — центр круга F. Так как РО ⟂ β , α || β , то α ⟂ РО. Значит, в сечении конуса плоскостью α получается круг с центром в точке O 1 = α ∩ РО. Обозначим этот круг F 1 .
Рассмотрим гомотетию с центром P, при которой плоскость β основания данного конуса отображается на параллельную ей плоскость α (при гомотетии плоскость, не проходящая через центр гомотетии, отображается на параллельную ей плоскость).
Так как при гомотетии её центр является неподвижной точкой, прямая, проходящая через центр гомотетии, отображается на себя, а пересечение двух фигур — на пересечение их образов, то гомотетия отображает основание F конуса на его параллельное сечение — круг F 1 , при этом центр О основания отображается на центр О 1 круга F 1 (почему?). Кроме того, если РХ — произвольная образующая конуса, где Х — точка окружности основания, то при гомотетии точка X отображается на точку X 1 = РX ∩ α . Учитывая, что отношение длин гомотетичных отрезков равно коэффициенту гомотетии, получаем:
= = k, (*)
где k — коэффициент гомотетии , т. е. параллельное сечение конуса делит его образующие и высоту на пропорциональные части.
А поскольку гомотетия является подобием, то круг F 1 , являющийся параллельным сечением конуса, подобен его основанию.
Вследствие того что отношение площадей гомотетичных фигур равно квадрату коэффициента гомотетии и k = PO 1 : Р О , где РO 1 и PO — расстояния соответственно параллельного сечения и основания пирамиды от её вершины, то
S сечен : S основ = k 2 = : PO 2 .
18.7. Вписанные в конус и описанные около конуса пирамиды
Определение. Пирамида называется вписанной в конус, если у них вершина общая, а основание пирамиды вписано в основание конуса. В этом случае конус называется описанным около пирамиды.
Для построения изображения правильной пирамиды, вписанной в конус:
— строят изображение основания пирамиды — правильного многоугольника, вписанного в основание конуса;
— соединяют отрезками прямых вершину конуса с вершинами построенного многоугольника;
— выделяют видимые и невидимые (штрихами) линии изображаемых фигур.
На рисунках 179—182 изображена вписанная в конус пирамида, в основаниях которой лежит:
— прямоугольный треугольник (см. рис. 179);
Видео:№550. Осевое сечение конуса — прямоугольный треугольник. Найдите площадь этого сечения, еслиСкачать
Конус в геометрии — элементы, формулы, свойства с примерами
Конусом называется тело, полученное вращением прямоугольного треугольника вокруг оси, проходящей через один из его катетов (рис. 126).
На рисунке 127 показано образование конуса при вращении прямоугольного треугольника вокруг прямой , которой принадлежит катет . При этом ломаная описывает поверхность конуса, гипотенуза — боковую поверхность, а катет — основание конуса (рис. 128). Саму гипотенузу называют образующей конуса, неподвижную точку — вершиной конуса, прямую, проходящую через неподвижный катет , — осью конуса, а перпендикуляр, опущенный из вершины конуса на основание, — высотой конуса (рис. 129). Основание высоты конуса совпадает с центром основания конуса.
Поверхность конуса можно развернуть на плоскость, в результате получится сектор, представляющий боковую поверхность конуса, и круг, представляющий основание конуса. На рисунке 130 представлены конус и его развертка.
Теорема 5.
Боковая поверхность конуса равна произведению полуокружности его основания и образующей:
Доказательство проведите самостоятельно, используя рисунок 130.
Важной пространственной конфигурацией, которая часто встречается в задачах, является сочетание конуса с плоскостью.
Если конус пересечь плоскостью, параллельной основанию, то получится круг (рис. 131), а если плоскостью, проходящей через вершину, то — равнобедренный треугольник, у которого боковые стороны являются образующими конуса (рис. 132).
Осевое сечение конуса, т. е. сечение плоскостью, проходящей через ось конуса, является равнобедренным треугольником, у которого основание равно диаметру основания конуса (рис. 133).
Проведем через вершину конуса секущую плоскость и будем ее поворачивать вокруг прямой, перпендикулярной оси конуса (рис. 134). При этом основание треугольника-сечения будет укорачиваться, а его боковые стороны сближаться до того момента, пока не совпадут. Получим плоскость, целиком содержащую образующую и не имеющую с конусом других общих точек. Такая плоскость называется касательной плоскостью конуса.
Теорема 6.
Если плоскость касается конуса по некоторой образующей, то ей перпендикулярна плоскость, проходящая через эту образующую и ось конуса.
Доказательство:
Пусть плоскость касается конуса с осью по образующей (рис. 135). Докажем, что плоскость, содержащая эту образующую и ось , перпендикулярна плоскости .
Проведем прямую , которая перпендикулярна образующей , пересекает ось конуса в точке , отличной от вершины . Через точку проведем плоскость , перпендикулярную оси , она пересечет конус по кругу с центром и плоскость — по прямой , касающейся окружности с центром . Эта касательная по свойству касательной к окружности перпендикулярна радиусу соответствующей окружности. Но этот радиус является проекцией наклонной на плоскость , поэтому по теореме о трех перпендикулярах прямая перпендикулярна наклонной , т. е. прямой .
Таким образом, прямая перпендикулярна прямым и , которые пересекаются и лежат в плоскости , поэтому по признаку перпендикулярности прямой и плоскости прямая перпендикулярна плоскости . Значит, плоскость , содержащая прямую , перпендикулярна плоскости .
Теорема 6 выражает свойство касательной плоскости конуса.
Теорема 7.
Плоскость касается конуса, если она проходит через его образующую и перпендикулярна плоскости, проходящей через эту образующую и ось конуса.
Доказательство:
Пусть плоскость проходит через образующую конуса с осью и перпендикулярна плоскости (рис. 136). Докажем, что плоскость касается конуса, т. е. что точки образующей , и только они, являются общими точками конуса и плоскости .
Точки образующей принадлежат и конусу, и плоскости . Пусть — какая-либо точка плоскости вне образующей . Через эту точку проведем плоскость , перпендикулярную оси , она пересекает поверхность конуса по окружности с центром , образующую — в некоторой точке и плоскость — по прямой . Пусть — прямая, которая перпендикулярна плоскости и пересекает ось в точке . Тогда по теореме о трех перпендикулярах прямая , проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна ее проекции . Значит, — касательная к окружности , и поэтому точка находится вне окружности , а значит, и вне конуса.
Теорема 7 выражает признак касательной плоскости конуса.
Пусть есть конус с вершиной (рис. 137). Впишем в основание конуса многоугольник и через его вершины проведем образующие . В результате получим тело , являющееся пирамидой. Ее называют пирамидой, вписанной в конус, а сам конус — конусом, описанным около пирамиды.
Если основание конуса вписано в основание пирамиды, а боковая поверхность конуса касается боковых граней пирамиды, то говорят, что пирамида описана около конуса, или конус вписан в пирамиду (рис. 138).
Теорема 8.
Объем конуса равен третьей доле произведения площади Рис. 139 т его основания и высоты:
Доказательство:
Пусть есть конус с осью (рис. 139). В него впишем правильную пирамиду , а около него опишем правильную пи-рамиду . В соответствии с теоремой 4 объем первой пирамиды равен третьей доле произведения площади многоугольника и высоты пирамиды, т. е. высоты конуса, а объем второй — произведению площади многоугольника и той же высоты. Объем самого конуса заключен между этими числами.
Будем увеличивать количество сторон оснований пирамид. Тогда объем первой пирамиды будет увеличиваться, объем второй — уменьшаться, причем их разность стремится к нулю, если значение переменной неограниченно увеличивается. То число, к которому приближаются объемы обеих пирамид, принимается за объем конуса.
В описанном процессе высота пирамиды не изменяется, а площади обоих многоугольников — и — стремятся к площади круга, являющегося основанием конуса. Значит, объем конуса равен третьей доле произведения площади основания конуса и его высоты :
Теорема 9.
Если конус пересечь плоскостью, параллельной его основанию, то:
- а) образующая и высота разделяются на пропорциональные части;
- б) площади сечения и основания относятся как квадраты их расстояний от вершины.
Используя рисунок 140, докажите эту теорему самостоятельно.
Секущая плоскость, параллельная основанию конуса, разделяет его на две части (рис. 141). Одна из этих частей также является конусом, а другая — телом, которое называется усеченным конусом.
Основание данного конуса и круг, полученный в сечении, называют основаниями усеченного конуса, а отрезок образующей данного конуса, заключенный между его основанием и секущей плоскостью, — образующей усеченного конуса (рис. 142). Высотой усеченного конуса называется перпендикуляр, проведенный из какой-либо точки одного его основания к плоскости другого основания.
Усеченный конус можно получить вращением прямоугольной трапеции вокруг боковой стороны, к которой прилежат прямые углы (рис. 143).
Пример:
Найдем боковую поверхность усеченного конуса. Пусть есть усеченный конус, у которого радиусы оснований и равны и соответственно, а образующая равна (рис. 144).
Достроим его до полного конуса. Достроенная часть представляет собой конус, у которого радиус основания равен . Пусть образующая достроенного конуса равна .
Боковую поверхность усеченного конуса можно получить как разность боковых поверхностей и полного и достроенного конусов. Пусть и — длины окружностей нижнего и верхнего оснований усеченного конуса.
Найдем , учитывая подобие треугольников и :
Таким образом, боковая поверхность усеченного конуса равна произведению полусуммы длин окружностей его оснований и образующей.
Пример:
Используя рисунок 144, можно, как и для усеченной пирамиды (см. параграф 9), доказать, что объем усеченного конуса равен третьей доле произведения высоты конуса и суммы площадей и оснований конуса и их среднего геометрического :
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Сфера в геометрии
- Шар в геометрии
- Правильные многогранники в геометрии
- Многогранники
- Возникновение геометрии
- Призма в геометрии
- Цилиндр в геометрии
- Пирамида в геометрии
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:№551. Осевое сечение конуса — правильный треугольник со стороной 2г. Найдите площадь сечения,Скачать
Конус
Конус — это объемное тело, которое получается при вращении прямоугольного треугольника вокруг одного из его катетов.
Возьмем прямоугольный треугольник АВС. Будем вращать этот треугольник вокруг катета АС.
Прямая АС — ось косинуса.
Отрезок АС — высота конуса.
Основание конуса — круг, образованный при вращении катета ВС.
Коническая поверхность (или боковая поверхность конуса) — поверхность, образованная при вращении гипотенузы АВ и состоящая из отрезков с общим концом А.
Образующие конуса — отрезки, из которых составлена боковая поверхность конуса (на рисунке выше указаны образующие АВ, АВ1 и АВ2).
Определение
Конус — это тело, ограниченное кругом и конической поверхностью. |
Объем конуса
Объем конуса равен одной трети произведения площади основания на высоту. |
Доказательство
Дано: конус с площадью основания S, высотой h и объемом V.
Доказать: V = Sh.
Доказательство:
Воспользуемся принципом Кавальери. Рассмотрим конус и пирамиду с площадями оснований S и высотами ЕН = h и РО = h соответственно, «стоящие» на одной плоскости .
Проведем секущую плоскость , параллельную плоскости и пересекающую высоты ЕН и РО в точках Н1 и О1 соответственно. В сечении конуса плоскостью получится круг радиуса Н1А1.
ЕН1А1 подобен ЕНА по двум углам (Е — общий, ЕН1А1 = ЕНА = 90 0 , т.к. в противном случае прямые НА и Н1А1, а значит, и плоскости и пересекались бы, что противоречит условию). Поэтому , откуда и площадь сечения конуса равна .
Площадь сечения пирамиды равна . По условию ЕН = РО = h, значит, ЕН1 = РО1 (т.к. ЕН1 = h — НН1 и РО1 = h — ОО1, параллельные плоскости отсекают одинаковые отрезки НН1 и ОО1 от отрезков ЕН и РО, т.е. НН1 = ОО1).
Следовательно, площадь сечения конуса равна площади сечения пирамиды. Поэтому и его объем равен объему пирамиды, т.е. V = Sh. Что и требовалось доказать.
Площадь боковой поверхности конуса
Рассмотрим конус с радиусом основания и образующей .
Представим, что его боковую поверхность разрезали по одной из образующих и развернули так, что получился круговой сектор.
Радиус этого сектора равен образующей конуса, т.е. равен , а длина дуги сектора равна длине окружности основания конуса, т.е. равна 2, — градусная мера дуги сектора, тогда площадь данного сектора: . (1)
Длина дуги окружности с градусной мерой и радиусом равна . С другой стороны, длина этой дуги равна 2, поэтому учитывая (1), получим: .
Площадь боковой поверхности конуса равна площади ее развертки, т.е. . |
Поделись с друзьями в социальных сетях:
🎦 Видео
Геометрия 11 класс (Урок№7 - Конус.)Скачать
Стереометрия | КонусСкачать
Задание 42. УСЕЧЕННЫЙ КОНУС. Часть 1Скачать
Простой расчёт развёртки конусаСкачать
ГЕОМЕТРИЯ 11 класс: Конус Площадь конуса. Усеченный конусСкачать
Конус. 11 класс.Скачать
Понятие конуса. Видеоурок по геометрии 11 классСкачать
Сечение конусаСкачать
Конус. Практическая часть. 11 класс.Скачать
Решение задач на конусСкачать
Как начертить КОНУС С ВЫРЕЗОМ (чертеж + аксонометрия)Скачать
Конус путем вращения треугольникаСкачать
Часть 2. ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ. Блок 10. Конус. Урок 3. Сечение плоскостью под углом к основанию.Скачать
сечение конусаСкачать
2 3 проекция точки на конусеСкачать
Конус. Урок 8. Геометрия 11 классСкачать
Построение линии пересечения поверхности конуса с проецирующей плоскостьюСкачать
Усеченный конус. Практическая часть. 11 класс.Скачать