Общая точка окружности и касательной называется точкой

Окружность. Касательная к окружности.

Прямая (MN), имеющая с окружностью только одну общую точку (A), называется касательной к окружности.

Общая точка окружности и касательной называется точкой

Общая точка называется в этом случае точкой касания.

Возможность существования касательной, и притом проведенной через любую точку окружности, как точку касания, доказывается следующей теоремой.

Теорема.

Если прямая перпендикулярна к радиусу в его конце, лежащем на окружности, то эта прямая — касательная.

Общая точка окружности и касательной называется точкой

Пусть O — центр некоторого круга и OA какой-нибудь его радиус. Через его конец A проведем MNOA.Требуется доказать, что прямая MNкасательная, т.е. что эта прямая имеет с окружностью только одну общую точку A.

Допустим противное: пусть MN имеет с окружностью еще другую общую точку, например B. Тогда прямая OB была бы радиусом и, следовательно, равнялась бы OA.

Но этого быть не может, так как, если OA — перпендикуляр, то OB должна быть наклонной к MN, а наклонная больше перпендикуляра.

Обратная теорема.

Если прямая касательная к окружности, то радиус, проведенный в точку касания, перпендикулярен к ней.

Следствие.

Через всякую данную на окружности точку можно провести касательную к этой окружности и притом только одну, так как через эту точку можно провести перпендикуляр, и притом только один, к радиусу, проведенному в нее.

Теорема.

Касательная параллельная хорде, делит в точке касания дугу, стягиваемую хордой, пополам.

Пусть прямая AB касается окружности в точке M и параллельна хорде СD. Требуется доказать, что ∪CM= ∪MD.

Проведя через точку касания диаметр ME, получаем: EMAB и следовательно, EMСD. Поэтому СM=MD.

Через данную точку провести касательную к данной окружности.

Если данная точка находится на окружности, то проводят через нее радиус и через конец радиуса перпендикулярную прямую. Эта прямая будет искомой касательной.

Рассмотрим тот случай, когда точка дана вне круга.

Общая точка окружности и касательной называется точкой

Пусть требуется провести к окружности с центром O касательную через точку A. Для этого из точки A, как из центра, описываем дугу радиусом AO, а из точки O, как центра, пересекаем эту дугу в точках B и С раствором циркуля, равным диаметру данного круга.

Проведя затем хорды OB и , соединим точку A с точками D и E, в которых эти хорды пересекаются с данной окружностью. Прямые AD и AEкасательные к окружности O. Действительно, из построения видно, что треугольники AOB и AOС равнобедренные (AO = AB =AС) с основаниями OB и , равными диаметру круга O.

Так как OD и OE — радиусы, то Dсередина OB, а E — середина , значит AD и AEмедианы, проведенные к основаниям равнобедренных треугольников, и потому перпендикулярны к этим основаниям. Если же прямые DA и EA перпендикулярны к радиусам OD и OE, то они — касательные.

Следствие.

Две касательные, проведенные из одной точки к окружности, равны и образуют равные углы с прямой, соединяющей эту точку с центром.

Так AD=AE и ∠OAD = ∠OAE потому, что прямоугольные треугольники AOD и AOE, имеющие общую гипотенузу AO и равные катеты OD и OE (как радиусы), равны. Заметим, что здесь под словом “касательная” подразумевается собственно “отрезок касательной” от данной точки до точки касания.

Окружность

Окружностью называется фигура, состоящая из всех точек плоскости, находящихся от данной точки на данном расстоянии. Данная точка называется центром окружности, а отрезок, соединяющий центр с какой-либо точкой окружности, — радиусом окружности.

Часть плоскости, ограниченная окружностью называется кругом.

Круговым сектором или просто сектором называется часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Сегментом называется часть круга, ограниченная дугой и стягивающей ее хордой.

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Основные термины


Касательная

Прямая, имеющая с только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.

Свойства касательной


  1. Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Хорда

Отрезок, соединяющий две точки окружности, называется ее хордой. Хорда, проходящая через центр окружности, называется диаметром.

Свойства хорд


  1. Диаметр (радиус), перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Верна и обратная теорема: если диаметр (радиус) делит пополам хорду, то он перпендикулярен этой хорде.

Дуги, заключенные между параллельными хордами, равны.

Если две хорды окружности, AB и CD пересекаются в точке M , то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM•MB = CM•MD.

Видео:Отрезки касательных из одной точки до точек касания окружности равны | Окружность | ГеометрияСкачать

Отрезки касательных из одной точки до точек касания окружности равны | Окружность |  Геометрия

Свойства окружности


  1. Прямая может не иметь с окружностью общих точек; иметь с окружностью одну общую точку ( касательная ); иметь с ней две общие точки ( секущая ).
  2. Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.
  3. Точка касания двух окружностей лежит на линии, соединяющей их центры.

Теорема о касательной и секущей

Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: MC 2 = MA•MB .

Теорема о секущих

Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть. MA•MB = MC•MD.

Видео:8 класс, 32 урок, Касательная к окружностиСкачать

8 класс, 32 урок, Касательная к окружности

Углы в окружности

Центральным углом в окружности называется плоский угол с вершиной в ее центре.

Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным углом.

Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности. Мерой дуги может служить мера соответствующего ей центрального угла.

Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром.

Свойства углов, связанных с окружностью


  1. Вписанный угол либо равен половине соответствующего ему центрального угла, либо дополняет половину этого угла до 180°.

Углы, вписанные в одну окружность и опирающиеся на одну и ту же дугу, равны.

Вписанный угол, опирающийся на диаметр, равен 90°.

Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине дуги, заключенной между его сторонами.

Видео:11 класс, 40 урок, Угол между касательной и хордойСкачать

11 класс, 40 урок, Угол между касательной и хордой

Длины и площади


  1. Длина окружности C радиуса R вычисляется по формуле:

Площадь S круга радиуса R вычисляется по формуле:

Длина дуги окружности L радиуса R с центральным углом ,измеренным в радианах, вычисляется по формуле:

Площадь S сектора радиуса R с центральным углом в радиан вычисляется по формуле:

Видео:Касательные к окружностиСкачать

Касательные к окружности

Вписанные и описанные окружности


Окружность и треугольник


  • центр вписанной окружности — точка пересечения биссектристреугольника, ее радиус r вычисляется по формуле:

где S — площадь треугольника, а — полупериметр;

центр описанной окружности — точка пересечения серединных перпендикуляров, ее радиус R вычисляется по формуле:

здесь a, b, c — стороны треугольника, — угол, лежащий против стороны a , S — площадь треугольника;

  • центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы;
  • центр описанной и вписанной окружностей треугольника совпадают только в том случае, когда этот треугольник — правильный.
  • Окружность и четырехугольники


    • около выпуклого четырехугольника можно описать окружность тогда и только тогда, когда сумма его внутренних противоположных углов равна 180°:

    в четырехугольник можно вписать окружность тогда и только тогда, когда у него равны суммы противоположных сторон:

    • около параллелограмма можно описать окружность тогда и только тогда, когда он является прямоугольником;
    • около трапеции можно описать окружность тогда и только тогда, когда эта трапеция — равнобедренная; центр окружности лежит на пересечении оси симметрии трапеции с серединным перпендикуляром к боковой стороне;
    • в параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом.

    Видео:Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать

    Пойми Этот Урок Геометрии и получай 5-ки — Касательная и Окружность

    Касательная к окружности

    Общая точка окружности и касательной называется точкой

    О чем эта статья:

    Видео:Геометрия 8 класс (Урок№25 - Взаимное расположение прямой и окружности.)Скачать

    Геометрия 8 класс (Урок№25 - Взаимное расположение прямой и окружности.)

    Касательная к окружности, секущая и хорда — в чем разница

    В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

    Общая точка окружности и касательной называется точкой

    Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

    Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

    Общая точка окружности и касательной называется точкой

    Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

    Видео:Касательная к окружности | Геометрия 7-9 класс #69 | ИнфоурокСкачать

    Касательная к окружности | Геометрия 7-9 класс #69 | Инфоурок

    Свойства касательной к окружности

    Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

    Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

    Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

    • окружность с центральной точкой А;
    • прямая а — касательная к ней;
    • радиус АВ, проведенный к касательной.

    Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

    Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

    В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

    Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

    Общая точка окружности и касательной называется точкой

    Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

    Задача

    У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

    Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

    Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

    ∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

    Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

    Общая точка окружности и касательной называется точкой

    Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

    Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

    Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

    Общая точка окружности и касательной называется точкой

    Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

    Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

    Задача 1

    У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

    Решение

    Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

    ∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

    Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

    ∠BDC = ∠BDA × 2 = 30° × 2 = 60°

    Итак, угол между касательными составляет 60°.

    Общая точка окружности и касательной называется точкой

    Задача 2

    К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

    Решение

    Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

    Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

    ∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

    Общая точка окружности и касательной называется точкой

    Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

    Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

    Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

    Общая точка окружности и касательной называется точкой

    Задача 1

    Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

    Решение

    Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

    Найдем длину внешней части секущей:

    МС = МВ — ВС = 16 — 12 = 4 (см)

    МА 2 = МВ × МС = 16 х 4 = 64

    Общая точка окружности и касательной называется точкой

    Задача 2

    Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

    Решение

    Допустим, что МО = у, а радиус окружности обозначим как R.

    В таком случае МВ = у + R, а МС = у – R.

    Поскольку МВ = 2 МА, значит:

    МА = МВ : 2 = (у + R) : 2

    Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

    (у + R) 2 : 4 = (у + R) × (у — R)

    Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

    Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

    Общая точка окружности и касательной называется точкой

    Ответ: MO = 10 см.

    Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

    Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

    Общая точка окружности и касательной называется точкой

    Задача 1

    Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

    Решение

    Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

    АВ = ∠АВС × 2 = 32° × 2 = 64°

    Общая точка окружности и касательной называется точкой

    Задача 2

    У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

    Решение

    Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

    КМ = 2 ∠МКВ = 2 х 84° = 168°

    Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

    ∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

    Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

    ∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

    🎬 Видео

    Касательная и секущая к окружности.Скачать

    Касательная и секущая к окружности.

    ОГЭ математика. Задание 16. Окружность. Касательная.Скачать

    ОГЭ математика. Задание 16. Окружность. Касательная.

    Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

    Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

    Геометрия 8 класс : Касательная к окружностиСкачать

    Геометрия 8 класс : Касательная к окружности

    Построение касательной к окружности.Скачать

    Построение касательной к окружности.

    Доказательство того, что радиус перпендикулярен касательной | Окружность | ГеометрияСкачать

    Доказательство того, что радиус перпендикулярен касательной | Окружность |  Геометрия

    Построение касательной к окружностиСкачать

    Построение касательной к окружности

    Геометрия 8 класс. Касательная к окружностиСкачать

    Геометрия 8 класс. Касательная к окружности

    Урок по теме КАСАТЕЛЬНАЯ К ОКРУЖНОСТИСкачать

    Урок по теме КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ

    Окружность, касательная, секущая и хорда | МатематикаСкачать

    Окружность, касательная, секущая и хорда | Математика

    Некоторые свойства окружности касательная к окружности - 7 класс геометрияСкачать

    Некоторые свойства окружности касательная к окружности - 7 класс геометрия

    Касательная к окружностиСкачать

    Касательная к окружности
    Поделиться или сохранить к себе: