О вектор в электротехнике

Векторная диаграмма токов и напряжений

Процессы, протекающие в электроцепи переменного тока с активным сопротивлением и реактивной индуктивностью, можно наглядно выразить в графическом виде.

О вектор в электротехнике

Статья даст описание, что такое векторные диаграммы, где и для чего они используются. Также будет описана временная диаграмма и ее назначение. В конце будет дан пример построения простой диаграммы для электроцепи с последовательным соединением элементов.

Видео:Векторная диаграмма токов и топографическая диаграмма напряженийСкачать

Векторная диаграмма токов и топографическая диаграмма напряжений

Определение

Векторная диаграмма токов и напряжений — это геометрическое изображение всех процессов, величин и амплитуд синусоидального тока. Все имеющиеся величины располагаются на плоскости в виде векторов.

Построение векторной диаграммы использует физика и электротехника. Благодаря созданию такой диаграммы можно значительно упростить выполняемые расчеты, а так же в наглядном и доступном виде отобразить происходящие процессы.

Метод векторных диаграмм позволяет также увидеть в цепи переменного тока возникающие короткие и межфазовые замыкания, а также вычислить возможные потери мощности.

О вектор в электротехнике

Обычно такая диаграмма строится вместе с временной. Временная диаграмма — это графическое изображение входа и выхода в электрической цепи. Временные диаграммы помогают определить временной промежуток между началом, протеканием и окончанием сигнала. Например, при нажатии на кнопку возникает сигнал, который поступает к приемнику и запускает процесс его работы.

Временные диаграммы также применимы к синусоидальной электрической цепи, так как этот ток имеет начальную точку отсчета (включение питания) и время движения от источника тока к потребителю. Такие диаграммы представляют собой график, на котором изображается начальная точка отсчета, вектор времени и углы смещения фаз.

Видео:Векторная диаграммаСкачать

Векторная диаграмма

Разновидности

Разобравшись, что такое и для чего применяется векторная диаграмма, нужно узнать какие разновидности построения существуют. Они отличаются по характеру построения и типу. По характеру бывают:

  1. Точными. Векторная точная диаграмма — это отображение выполненного численного расчета в соответствующем масштабе. С помощью нее определяют параметры фаз и амплитудные значения строго геометрическим способом.
  2. Качественные. Такие гистограммы строят для наблюдения взаимосвязи между электровеличинами без использования числовых характеристик. Такой способ позволяет экспериментировать с различными параметрами и моделировать процессы в электроцепях.

Векторную диаграмму токов можно построить 2 разными способами:

  1. Круговым. В ее принципе лежит вектор, который описывает изменение характеристик путем образования круга или полукруга на плоскости. При таком варианте учитывается направление движения с учетом направления положения вектора.О вектор в электротехнике
  2. Линейным. Такой векторной диаграмме при изменении характеристик направление изменяется строго прямолинейно.

О вектор в электротехнике

Оба построения могут использоваться для расчета характеристик переменного тока в цепи с сопротивлением и индуктивностью.

Видео:Построение векторных диаграмм/Треугольник токов, напряжений и мощностей/Коэффициент мощностиСкачать

Построение векторных диаграмм/Треугольник токов, напряжений и мощностей/Коэффициент мощности

Построение

Построение простых векторных диаграмм будет рассмотрено в данном разделе. Для примера можно взять простую цепь с несколькими элементами и их значениями. Такая схема подразумевает последовательное соединение элементов между собой. Цепь состоит из катушки индуктивности, конденсатора и активного сопротивления. Параметры каждого элемента цепи приведены ниже.

  1. Катушка индуктивности UL с напряжением 15 вольт. Ток в индуктивном сопротивлении имеет сдвиг фазы 90°.
  2. Конденсатор UC с напряжением 20 вольт и опережением на 90 градусов.
  3. Напряжение резистора UR 10 вольт, его направление совпадает с током I.
  4. Сила тока в цепи I равняется 3 ампера.

Далее можно сделать простую диаграмму, которая поможет определить напряжение для всей схемы.

  1. Отложить на плоскости I в виде горизонтальной линии с масштабом 1 A/см (масштаб может быть любым, главное — выполнять все элементы диаграммы одного типа в одном масштабе). Сам ток равен 3 ампера, поэтому его длина будет равна 3 см.О вектор в электротехнике
  2. Теперь необходимо отложить вертикальный вектор UL в масштабе 5 В/см. Он отображает напряжение катушки индуктивности и равен 15 вольт. Его длина на плоскости составит в данном масштабе так же 3 см.О вектор в электротехнике
  3. Далее нужно графически обозначить вектор напряжения активного сопротивления. Его точка отсчета располагается на окончании вертикального вектора UL. Для принятого масштаба 5 В/см ему соответствует вектор длиной 2 см. Линия должна быть строго параллельна горизонтальному вектору I.О вектор в электротехнике
  4. Теперь нужно отобразить на данной диаграмме напряжение конденсатора UC. Его началом будет конечная точка вектора UR, а конец данного вектора будет расположен ниже горизонтального вектора I. В масштабе 5 В/см ему соответствует вектор длиной 4 см.О вектор в электротехнике
  5. Чтобы определить соответствующее такой схеме общение напряжение U надо будет сделать следующее. Начало вектора расположено в принятой точке отсчета, а конец его будет расположен в конечной точке вектора UC.

О вектор в электротехнике

Поэтому если есть схема с последовательным соединением элементов, то всегда можно довольно просто построить векторную диаграмму и рассчитать общее напряжение для такой схемы.

Видео:Векторные диаграммы и коэффициент мощностиСкачать

Векторные диаграммы и коэффициент мощности

Способ 2

Построение векторных диаграмм с учетом всех известных значений для цепи переменного тока с последовательным соединением конденсатора, резистора и катушки индуктивности. При таком построении нам так же известно напряжение самой цепи. Цепь состоит из:

  • Резистора UR;
  • Конденсатора UC;
  • Катушки UL.

  1. На плоскости Im откладывается вектор UR (резистор). Его направление точно совпадает с током, поэтому это будет горизонтальная линия.О вектор в электротехнике
  2. От точки отсчета откладывается вниз вектор UC (конденсатор). Вектор откладывается под углом 90 градусов вниз, так как он имеет указанное ранее опережение 90°.О вектор в электротехнике
  3. От этой же точки отсчета откладывается вектор UL (катушка индуктивности). Ее значение откладывается ровно на 90 градусов вертикально, так как есть сдвиг фазы на 90 градусов.

О вектор в электротехнике

Данная диаграмма может использоваться для контроля и расчета влияния всех известных параметров цепи и элементов, а также их взаимосвязи между собой.

  1. Показать результат сложения вектора UL и UC.О вектор в электротехнике
  2. При увеличении величины сопротивления определить разницу между напряжением и сопротивлением можно, используя новый вектор Um.О вектор в электротехнике
  3. Кроме того можно определить угол сдвига фазы φ в цепи.

О вектор в электротехнике

Основное преимущество векторной диаграммы заключается в следующем — простое и быстрое сложение, вычитание двух параметров во время расчета электрических цепей.

Понятие о векторах и векторных диаграммах также подразумевает расчет цепи питания трехфазной сети, подключенной по методу звезды. Она строится с учетом сразу 3 отложенных векторов от 0 оси ординат. Такое построение определяет вектор от источника тока к приемнику. Строится вектор со следующими значениями:

  1. На оси ОХ откладываются настоящие значения величин, а на оси OY мнимые значения.
  2. Угловая величина обозначается как W.
  3. Также присутствует сам вектор Im и угол сдвига фаз φ.

Далее нужно сделать:

  1. На плоскости выбрать точку отсчета.
  2. От нее отложить вектор Im, учитывая угол сдвига фаз равный 90°.
  3. Длина вектора Im равна значению его напряжения и откладывается в выбранном масштабе.

О вектор в электротехнике

Таким же образом на плоскость накладываются еще две прямые линии. Общая диаграмма покажет симметричность фаз или их сдвиг при появлении короткого замыкания. Такая диаграмма может стать примером для расчета напряжения, тока или нагрузки на каждую фазу с моделированием различных параметров.

Видео:ПРОСТОЙ СПОСОБ, как запомнить Векторы за 10 минут! (вы будете в шоке)Скачать

ПРОСТОЙ СПОСОБ, как запомнить Векторы за 10 минут! (вы будете в шоке)

Заключение

Векторные диаграммы сложны в понимании при расчете сложных цепей, с большим количеством сопротивлений и индуктивностью. Также, при расчете стоит учитывать тип соединения всех элементов, симметрию цепи и основные ее значения.

Видео:Зачем нужны векторные диаграммы?Скачать

Зачем нужны векторные диаграммы?

Видео по теме

Видео:Зачем нужен ВЕКТОР. Объяснение смыслаСкачать

Зачем нужен ВЕКТОР. Объяснение смысла

Векторные диаграммы в электротехнике

Вы будете перенаправлены на Автор24

Видео:Лекция по электротехнике 3.2 - Изображение синусоидальной функции векторомСкачать

Лекция по электротехнике 3.2 - Изображение синусоидальной функции вектором

Область применения векторных диаграмм

Векторная диаграмма – это графическое изображение величин объектов, меняющихся по закону косинуса (синуса), и соотношение между ними векторов — направленных отрезков.

Широкое распространение применение векторных диаграмм наблюдается в:

  1. Электротехнике.
  2. Оптике.
  3. Акустике.
  4. Теории колебаний.

Видео:Урок 25. Что такое Переменный ТОК | Практические примерыСкачать

Урок 25. Что такое Переменный ТОК | Практические примеры

Правила построения векторных диаграмм в электротехнике

В электротехнике векторная диаграмма используется для расчета электрических цепей, она представляет собой совокупность векторов электродвижущей силы и токов, имеющих одну частоту. Она дает наглядное представление о начальных фазах и углах сдвига фаз, а также о действующих значениях. В случае вращения векторов с одинаковой угловой скоростью (w=2pf) их взаимное положение зависит исключительно только от углов сдвига фаз, поэтому их положение не меняется. Это позволяет строить векторные диаграммы для сложных электрических цепей, основываясь на простых векторных диаграммах для отдельных элементов.

Синусоидальный ток – это переменный ток, изменяющийся в течении времени по направлению и величине, или, в частном случае, только по величине с сохранением направления.

Правила построения векторных диаграмм для электрических цепей с трехфазным и однофазным синусоидальным током следующие:

  1. До начала построения векторной диаграммы необходимо вычертить и проанализировать схему замещения, являющуюся эквивалентной принципиальной схеме исследуемой электрической цепи. На схеме замещения обязательно изображают каждый элемент или его параметры (емкостное, активное и индуктивное сопротивление) и указывают их направление для отдельных участков электрической цепи.
  2. Векторные диаграммы напряжения чертят в укрупненном масштабе, выбирая их для токов и напряжений:

где, mu и mi — выбранные напряжения и токи; Iuk и Iij — длина k-вектора напряжения и j-вектора тока.

Готовые работы на аналогичную тему

Выбор масштаба осуществляется по самой большой вычисленной или измеренной величине тока и напряжения.

Пример векторной диаграммы изображен на рисунке ниже.

Рисунок 1. Векторная диаграмма. Автор24 — интернет-биржа студенческих работ

Видео:Векторная диаграмма - как она строится без чисел по схемеСкачать

Векторная диаграмма -  как она строится без чисел по схеме

Векторные диаграммы при последовательном и параллельном соединении элементов

Для построения векторных диаграмм сначала составляются уравнения по законам Кирхгофа для исследуемой цепи. Пример рассматриваемой цепи изображен на рисунке ниже.

Рисунок 2. Цепь. Автор24 — интернет-биржа студенческих работ

Для вышепредставленной цепи, по второму закону Кирхгофа уравнение будет выглядеть следующим образом:

По закону Ома падения напряжения на каждом элемента можно выразить следующим образом:

Отсюда следует, что для построения векторной диаграммы необходимо отобразить слагаемые уравнения в комплексной плоскости. Поэтому при построении векторной диаграммы умножение вектора на мнимую единицу j становится причиной поворота вектора на 90 градусов против часовой стрелки, а умножение на — j к повороту по часовой стрелке на 90 градусов. Падение напряжения на резисторе (Ur) совпадает с током I (так как $U = I • R$). Падение напряжения на индуктивном сопротивлении опережает на 90 градусов вектор тока (так как $Ul = I • jXL$), а напряжение емкостном напряжения отстает от вектора тока на 90 градусов($Uc = — I • jXc$), таким образом векторная диаграмма будет выглядеть следующим образом.

Рисунок 3. Векторная диаграмма. Автор24 — интернет-биржа студенческих работ

Рассмотрим электрическую цепь с параллельным соединением, представленную на рисунке ниже.

Рисунок 4. Цепь с параллельным соединением. Автор24 — интернет-биржа студенческих работ

Уравнение для данной электрической цепи по первому закону Кирхгофа будет иметь следующий вид:

$I – Ir – Ic — IL = 0$

$I = Ir + IL + Ic = 0$

Затем определяем токи в ветвях по закону Ома, учитывая, что –j = 1 / j и получаем:

$IL = E / (jXL) = — j • (E / XL)$

$Ic = E / (- jXc) = j • (E / Xc)$

Приведенные в уравнении слагаемые, также отражаются в комплексной плоскости. При построении векторной диаграммы на комплексной плоскости сначала отображается вектор электродвижущей силы (Е), а затем, уже относительно него отображаются векторы токов, с учетом отношений мнимой величины (j). Ток в резисторе совпадает по направлению с электродвижущей силой (так как $Ir = E / R$, а число R является действительной величиной). В индуктивном сопротивлении ток отстает от электродвижущей силы на 90 градусов (так как $IL = -j • (E / XL$, а величина (-j) представляет собой причину поворота этого вектора на 90 градусов по часовой стрелке). В емкостном сопротивлении ток будет опережать вектор электродвижущей силы на 90 градусов (так как $Ic = j • (E / Xc), умножение на величину j является причиной поворота данного вектора на 90 градусов против часовой стрелки. Результирующий вектор, таким образом, определяется после геометрического сложения векторов, согласно правилу параллелограмма. Получившаяся векторная диаграмма изображена на рисунке ниже. Ic = j • (E / Xc), умножение на величину j является причиной поворота данного вектора на 90 градусов против часовой стрелки. Результирующий вектор, таким образом, определяется после геометрического сложения векторов, согласно правилу параллелограмма. Получившаяся векторная диаграмма изображена на рисунке ниже.

Рисунок 5. Векторная диаграмма. Автор24 — интернет-биржа студенческих работ

Алгоритм построения векторной диаграммы для произвольной электрической цепи аналогичен алгоритму для параллельной цепи, с учетом прикладываемых напряжений и токов, которые протекают в ветвях.

Видео:Реактивная мощность за 5 минут простыми словами. Четкий #энерголикбезСкачать

Реактивная мощность за 5 минут простыми словами. Четкий #энерголикбез

«Применение векторов в электротехнике»

О вектор в электротехнике

Актуальность разработки состоит в том, что математический аппарат используется при изучении спецдисциплин.Знание темы векторы в математике важно при изучении электротехники.

Просмотр содержимого документа
««Применение векторов в электротехнике»»

«Применение векторов в электротехнике»

Рассмотреть векторы, как математические модели в построении векторных диаграмм в электротехнике.

• обобщить понятие «вектор» в математике,

• изучить построение векторных диаграмм в электротехнике.

Актуальность работы состоит в том, что математический аппарат, используется при изучении профессиональных дисциплин. Знание темы векторы в математике подготовит к изучению профессиональных дисциплин.

Векторы в математике.

Одним из фундаментальных понятий современной математики является вектор. Эволюция понятия вектора осуществлялась благодаря широкому использованию этого понятия в различных областях математики, механики, а так же в технике. Понятие вектора возникает там, где приходится иметь дело с объектами, которые характеризуются величиной и направлением. Например, некоторые физические величины, такие, как сила, скорость, ускорение и др., характеризуются не только числовым значением, но и направлением.

Вектор — это отрезок, который имеет направление. Конец вектора совпадает со стрелкой, начало — точка. Модуль вектора (абсолютная величина) — длина этого направленного отрезка.

Если начало вектора совпадает с его концом, получим нулевой вектор.

Два вектора являются равными, если их длина одинаковая и они имеют одинаковое направление.

Понятие вектора рассматривается как на плоскости, так и в пространстве. Над векторами можно выполнять различные операции.

Сложить векторы можно по правилу параллелограмма и по правилу треугольника.

Правило параллелограмма: диагональ параллелограмма — сумма двух векторов с общим началом.

Правило треугольника: от конца первого вектора отложить второй вектор, тогда их суммой будет вектор, начало которого совпадает с началом первого вектора, а конец с концом второго вектора. Сложение трех и более векторов подчиняется тем же закона, что и сложение 2 векторов

Рассмотрим правила на примерах.

О вектор в электротехнике

Вычитание векторов — это сумма положительного и отрицательного вектора.

О вектор в электротехнике

Векторы в электротехнике

Электротехника, наука, изучающая получение, распределение, преобразова-

ние и использование электрической энергии для практических целей.

Основной объект исследования переменный ток. При изучении процессов, происходящих в цепях переменного тока, удобно пользоваться методом векторного изображения синусоидально изменяющихся величин. Векторные диаграммы представляют собой совокупность векторов, изображающих синусоидально изменяющиеся величины, действующие в данной электрической цепи. Они позволяют упростить расчет цепей синусоидального тока и сделать его наглядным, применив вместо алгебраического сложения или вычитания мгновенных значений синусоидально изменяющихся токов, напряжений или э. д. с сложение или вычитание их векторов. Обычно при расчете электрических цепей переменного тока нас не интересуют мгновенные значения токов, напряжений и э. д. с, требуется определить только их действующие значения и сдвиг по фазе относительно друг друга. Поэтому при построении векторных диаграмм рассматривают неподвижные векторы для некоторого момента времени, который выбирают так, чтобы диаграмма была наглядной. В качестве модулей векторов принимают действующие значения соответствующих величин.

Построение векторной диаграммы выполняется в прямоугольной плоскости. Чтобы построить диаграмму нужно провести вектор длиною равный амплитудному значению искомой величины, под углом сдвига относительно другой величины.

В качестве примера рассмотрим построение векторной диаграммы для цепи, состоящей из последовательно подключенных конденсатора, резистора и катушки. Напряжение на катушке UL=15 В, напряжение на конденсаторе UC=20 В, напряжение на резисторе UR=10 В, ток в цепи I=3 А. Требуется найти общее напряжение.

Катушка носит индуктивный характер, а значит, в ней напряжение опережает ток по фазе на 90°.

Конденсатор носит емкостной характер, значит, ток в нем опережает по фазе напряжение на 90°.

Резистор обладает только активным сопротивлением, и напряжение в нем совпадает по фазе с током.

1. Отложим вектор тока в масштабе. Масштаб для тока у нас будет 1 А/см.

О вектор в электротехнике

2.Отложим вектор напряжения на катушке, масштаб для напряжения возьмем 5 В/см, получается, что нужно отложить шесть клеток вверх, так как напряжение в катушке опережает ток. Для наглядности обозначим синим цветом.

О вектор в электротехнике

3. Откладываем вектор активного сопротивления, так как напряжение в одной фазе с током, то мы его откладываем из конца вектора UL параллельно вектору тока I. Обозначим его красным цветом.

О вектор в электротехнике

4. Следующим шагом отложим вектор напряжения на конденсаторе, так как оно запаздывает на 90°, мы его отложим вертикально вниз, из конца вектора UR. Обозначим желтым цветом.

О вектор в электротехнике

5.Последним этапом мы отложим вектор общего напряжения, из начала координат в конец вектора UC и обозначим его зеленым цветом.

О вектор в электротехнике

Общее напряжение получилось равным 2,23 В, причем характер цепи емкостной, так как напряжение отстает от тока.

Векторной диаграммой изображается симметричная Э.Д.С., напряжение в трехфазной цепи.

Сделать вывод о правильности включения счетчика электрической

энергии на действующем присоединении можно, если векторная диаграмма, снятая на его зажимах, совпадет с нормальной.

Счетчик активной энергии установлен на стороне низшего напряжения

понижающего трансформатора в трехпроводной сети. Характер нагрузки

емкостной. При снятии векторной диаграммы прибором ВАФ-85 получены

📽️ Видео

Понятие вектора. Коллинеарные вектора. 9 класс.Скачать

Понятие вектора. Коллинеарные вектора. 9 класс.

Построение векторной диаграммы. Цепь RLCСкачать

Построение векторной диаграммы. Цепь RLC

Как снять векторную диаграммуСкачать

Как снять векторную диаграмму

Вектор Умова-Пойнтинга ● 1Скачать

Вектор Умова-Пойнтинга ● 1

Векторная диаграмма токов на комплексной плоскости вручнуюСкачать

Векторная диаграмма токов на комплексной плоскости вручную

Векторная диаграммаСкачать

Векторная диаграмма

Электротехника. ТОЭ 74. Вектора трёхфазной системы, прямая, нулевая и обратная последовательности.Скачать

Электротехника. ТОЭ 74. Вектора трёхфазной системы, прямая, нулевая и обратная последовательности.

Электромагнитная индукция. Простыми словамиСкачать

Электромагнитная индукция. Простыми словами

Основы электротехники: 04. Переменный токСкачать

Основы электротехники: 04. Переменный ток
Поделиться или сохранить к себе: