Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Развитие управляющих функций мозга ребёнка: полезные советы и упражнения для педагогов
Сертификат и скидка на обучение каждому участнику
- ПРАКТИЧЕСКАЯ РАБОТА.
- Некоторая окружность касается 2 пересекающихся прямых
- Некоторая окружность касается двух
- Некоторая окружность касается двух пересекающихся прямых в пространстве?
- Молю помогите прямая AC касается в точке C окружности с центром O найдите радиус окружности если угол AOC 60 градусов AO = 20?
- Прямая AB касается окружности с центром О в точке В?
- Окружность радиусов R и r (R> ; r) касаются некоторой прямой?
- Укажите номера верных утверждений : а) Если радиус окружности равен 10 см, а расстояние от центра окружности до прямой равно 2 см, то эти прямая и окружность пересекаются б) Если центральный угол раве?
- Прямая МК касается в точке М окружности с центром О, причем, МК = 22см?
- Если расстояние от центра окружности до прямой меньше диаметра окружности то прямая и окружность пересекаются?
- Молю помогите прямая AC касается в точке C окружности с центром O найдите радиус окружности если угол AOC 60 градусов AO = 20?
- Какие из следующих суждений верны?
- Две окружности касаются внешним образом в точке К?
- Прямая АВ в точке А касается окружности с центром О?
- Практическая работа по математике на тему «Аксиомы стереометрии»
- ПРАКТИЧЕСКАЯ РАБОТА.
- Задание 16 Профильного ЕГЭ по математике. Планиметрия. Задача 3
- Окружность и круг — определение и вычисление с примерами решения
- Определение окружности и круга
- Определение окружности и ее элементов
- Что такое окружность и круг
- Пример №3
- Окружность и треугольник
- Описанная окружность
- Вписанная окружность
- Пример №4
- Пример №5
- Геометрические построения
- Пример №6
- Пример №7
- Пример №8
- Пример №9
- Пример №10
- Пример №11
- Пример №12
- Пример №13
- Задачи на построение
- Пример №14
- Пример №15
- Пример №16
- Пример №17
- Свойство диаметра, перпендикулярного хорде
- Касательная к окружности
- Признак касательной
- Свойство отрезков касательных
- Касание двух окружностей
- Задачи на построение
- Основные задачи на построение
- Решение задач на построение
- Пример №18
- Геометрическое место точек
- Основные теоремы о ГМТ
- Метод геометрических мест
- Пример №19
- Описанная и вписанная окружности треугольника
- Окружность, вписанная в треугольник
- Пример №20
- Задачи, которые невозможно решить с помощью циркуля и линейки
- Циркуль или линейка
- Об аксиомах геометрии
- Метод вспомогательного треугольника
- Пример №21
- Пример №22
- Пример №23
- Реальная геометрия
- Справочный материал по окружности и кругу
- Что называют окружностью
- Окружность, вписанная в треугольник
- Окружность, описанная около треугольника
- Геометрическое место точек в окружности и круге
- Некоторые свойства окружности. Касательная к окружности
- Окружность, проходящая через точку и касающаяся двух прямых
- Ответы к страницам 106-107 №408-418 ГДЗ к учебнику «Математика» 6 класс Дорофеев, Шарыгин
- Глава 5. Окружность Ответы к параграфу 5.1 Окружность и прямая
- Задание № 408
- Задание № 409
- Задание № 410
- Задание № 411
- Задание № 412
- Задание № 413
- Задание № 414
- Задание № 415
- Задание № 416
- Задание № 417
- Задание № 418
Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать
ПРАКТИЧЕСКАЯ РАБОТА.
Тема: Аксиомы стереометрии
ЦЕЛЬ РАБОТЫ: закрепить и систематизировать знания обучающихся об аксиомах стереометрии и их следствиях; определить уровень усвоения знаний по данной теме; оценить результат деятельности обучающихся.
ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ:
1. Изучить теоретический материал ( А.В. Погорелов, «Геометрия», параграф 15, «Аксиомы стереометрии и их простейшие следствия»);
2. Выполнить задания практической работы;
3. Оформить отчет о работе.
Варианты практической работы
1. В пространстве даны три точки: А, В и С такие, что АВ = 14 см, В С = 16 см и АС = 18 см. Найдите площадь треугольника АВС.
2. Треугольник МКР — равносторонний со стороной, равной 12 см. Точка А лежит вне плоскости треугольника МКР, причем АК = АР = см, а АМ = 10 см. Найдите косинус угла, образованного высотами МЕ и АЕ соответственно треугольников МКР и АКР.
3. В плоскости α лежат точки В и С, точка А лежит вне плоскости α . Найдите расстояние от точки А до отрезка ВС, если АВ = 5 см, АС = 7 см, ЕС = 6 см.
4. Даны пять точек пространства. Через каждые две из них проведена прямая. Сколько различных прямых существует при этих условиях? Рас смотрите различные случаи расположения точек, выберите правильную комбинацию.
а) 1,5, 6, 7, 10; в) 1, 4, 5, 6, 8, 10;
6)1,5,6,8,10; г) 1, 5, 6, 8, 9, 10.
5. Проведены четыре различные плоскости. Известно, что каждые две из них пересекаются. Найдите наибольшее число прямых попарного пересечения плоскостей.
6. Некоторая окружность касается двух пересекающихся прямых в пространстве. Диаметр этой окружности равен дм, а расстояние от центра окружности до точки пересечения прямых равно см. Найдите угол между этими прямыми,
а) 30°; б) 45°; в) 60°; г) 90°.
7. Четыре точки пространства А, В, С и D образуют прямоугольник АВСО. Найдите площадь круга, описанного около этого прямоугольника, если
8. Прямые а и Ь пересекаются в точке О, прямая с так же проходит через точку О. Через каждые две из данных трех прямых проведена плоскость. Сколько всего различных плоскостей может быть проведено?
б) 1 или 2; г) 3 или 4.
1. В пространстве даны три точки: М,К и Р такие, что МК= 13см, МР = 14см, КР= 15см. Найдите площадь треугольника МКР.
2. Треугольник АВС — равносторонний со стороной, равной 8 см. Точка D лежит вне плоскости треугольника АВС, причем D В = D С = 5см, а D А = см. Найдите косинус угла между высотами D К и АК соответственно треугольников В D С и АВС.
3. Точки С и К лежат в плоскости β , а точка D — вне плоскости β . Найдите расстояние от точки D до отрезка СК, если С D = СК = 10 см, а D К = см.
4. В пространстве отмечены шесть точек, и через каждые две из них проведены прямые. Рассмотрев все случаи расположения точек, найдите наибольшее число образовавшихся различных прямых.
а) 30; 6)15; в) 12; г) 18.
5. Проведены четыре различные плоскости. Каждые две из них пересекаются или не пересекаются. Сколько всего прямых попарного пересечения двух из этих плоскостей может оказаться?
а) 0, 1,2, 3, 4, 6; в) 0, 1,2,3,4,5,6;
6)0,3, 4, 5, 6; г) О, 1, 3, 4, 5, 6.
6. Некоторая окружность касается двух пересекающихся прямых в пространстве. Найдите радиус этой окружности, если угол между прямыми 60°, а расстояние от центра этой окружности до точки пересечения прямых равно ( ) см.
а) см; б) ( ) см; в) см; г) ( )см.
7. Четыре точки пространства М, К, Р и О образуют прямоугольник МКРО. Найдите площадь круга, описанного около этого прямоугольника, если ОР = дм и ОМ = дм.
8. Прямые m , n и l пересекаются в одной точке. Через каждые две из них проходит плоскость. Сколько всего различных плоскостей может быть проведено?
Видео:Сопряжение двух пересекающихся прямых. Урок 9. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать
Некоторая окружность касается 2 пересекающихся прямых
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Некоторая окружность касается двух
Видео:✓ Всё, что нужно знать про окружность | ЕГЭ. Задания 1 и 16. Профильный уровень | Борис ТрушинСкачать
Некоторая окружность касается двух пересекающихся прямых в пространстве?
Геометрия | 10 — 11 классы
Некоторая окружность касается двух пересекающихся прямых в пространстве.
Найдите радиус этой окружности, если угол между прямыми 60 градусов, а расстояние от центра этой окружности до точки пересечения прямых равно(квадратный корень из 6 минус квадратный корень из 2).
Прости можно другоепример.
Видео:Математика без Ху!ни. Уравнение плоскости.Скачать
Молю помогите прямая AC касается в точке C окружности с центром O найдите радиус окружности если угол AOC 60 градусов AO = 20?
Молю помогите прямая AC касается в точке C окружности с центром O найдите радиус окружности если угол AOC 60 градусов AO = 20.
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Прямая AB касается окружности с центром О в точке В?
Прямая AB касается окружности с центром О в точке В.
Найдите ОА, если АВ = 2 корень 3, а угол А равен 30 градусов.
Видео:1 2 4 сопряжение окружностейСкачать
Окружность радиусов R и r (R> ; r) касаются некоторой прямой?
Окружность радиусов R и r (R> ; r) касаются некоторой прямой.
Линия центров пересекает эту прямую под углом 30 * .
Найдите расстояние между центрами окружностей.
Видео:ОКРУЖНОСТЬ КАСАЕТСЯ КВАДРАТАСкачать
Укажите номера верных утверждений : а) Если радиус окружности равен 10 см, а расстояние от центра окружности до прямой равно 2 см, то эти прямая и окружность пересекаются б) Если центральный угол раве?
Укажите номера верных утверждений : а) Если радиус окружности равен 10 см, а расстояние от центра окружности до прямой равно 2 см, то эти прямая и окружность пересекаются б) Если центральный угол равен 39º, то дуга окружности, на которую опирается этот угол, равна 39º в) Прямые, содержащие высоты треугольника, пересекаются в одной точке г) Биссектриса треугольника делит его сторону пополам д) Если расстояние между центрами двух окружностей равно сумме их радиусов, то эти окружности касаются.
Видео:7 класс, 21 урок, ОкружностьСкачать
Прямая МК касается в точке М окружности с центром О, причем, МК = 22см?
Прямая МК касается в точке М окружности с центром О, причем, МК = 22см.
Найти радиус окружности и длину окружности если угол МОК = 60 градусов.
Видео:#7str. Как использовать инверсию?Скачать
Если расстояние от центра окружности до прямой меньше диаметра окружности то прямая и окружность пересекаются?
Если расстояние от центра окружности до прямой меньше диаметра окружности то прямая и окружность пересекаются?
Видео:Решение планиметрических задач повышенного уровня сложностиСкачать
Молю помогите прямая AC касается в точке C окружности с центром O найдите радиус окружности если угол AOC 60 градусов AO = 20?
Молю помогите прямая AC касается в точке C окружности с центром O найдите радиус окружности если угол AOC 60 градусов AO = 20.
Видео:Окружность, диаметр, хорда геометрия 7 классСкачать
Какие из следующих суждений верны?
Какие из следующих суждений верны?
1) Если расстояние от центра окружности до прямой равно диаметру окружности, то эти прямая и окружность касаются.
2)Если вписанный угол равен 30 градусам, то дуга окружности, на которую опирается этот угол, равна 60 градусам.
3) Через три любые точки проходит не более одной окружности.
4) Если расстояние от центра окружности до прямой меньше диаметра окружности, то эти прямая и окружность пересекаются.
Видео:Задача про две вневписанные окружности | ЕГЭ. Задание 16. Математика | Борис Трушин |Скачать
Две окружности касаются внешним образом в точке К?
Две окружности касаются внешним образом в точке К.
Прямая касается первой окружности в точке А, а второй – в точке В.
Прямая ВК пересекает первую окружность в точке D, прямая АК пересекает вторую окружность в точке С.
А) Докажите, что прямые AD и BC параллельны.
Б) Найдите площадь треугольника DКС, если известно, что радиусы окружностей равны 1 и 4.
Видео:Уравнение окружности (1)Скачать
Прямая АВ в точке А касается окружности с центром О?
Прямая АВ в точке А касается окружности с центром О.
Найдите ОВ, если радиус окружности равен 4, угол ОВА = Бета (нарисована окружность с центром О) Помогите срочно!
На этой странице сайта размещен вопрос Некоторая окружность касается двух пересекающихся прямых в пространстве? из категории Геометрия с правильным ответом на него. Уровень сложности вопроса соответствует знаниям учеников 10 — 11 классов. Здесь же находятся ответы по заданному поиску, которые вы найдете с помощью автоматической системы. Одновременно с ответом на ваш вопрос показаны другие, похожие варианты по заданной теме. На этой странице можно обсудить все варианты ответов с другими пользователями сайта и получить от них наиболее полную подсказку.
Рассмотрим прямоугольный треугольник ADB. Так как сумма острых углов прямоугольного треугольника равна 90° и угол ADB равен 40°, то угол BAD равен 90° — 40° = 50°. Так как угол ADC равен сумме углов ADB и BDC, то угол ADC равен 40° + 10° = 50° знач..
Радиус 4, 45 : 2 = 2, 225 м S = πr² = π * (2, 225)² = 4, 950625π(m²) если брать как п = 3, 14, то результат = 15, 5449625≈15, 54 м² ответ 15 м².
Радиус = половине диаметра = 2. 225 м площадь = pi * r ^ 2 = 3. 14 * 2. 225 ^ 2 = 15. 54 кв. М.
Сумма острых углов прямоугольного треугольника равна 90°. Т. к. Один из острых углов равен 60°, значит, второй угол равен 90° — 60° = 30°. Против меньшего угла лежит меньшая сторона. Значит, против угла в 30° лежит меньший катет. Известно, что к..
Х + х + 54 = 180 2х = 126 126 : 2 = 63 180 — 63 = 117 — а.
Из правильного семиугольника можно сформировать минимально 3 четырехугольника. См. рисунок.
Писать долго, поэтому я сразу отправлю тебе ответ).
Рассмотрим треугольник АВС, видим, что он равнобедренный(по условию) из этого следует, что медиана ВD является высотой и бессекрисой одновременно, значит угол ABD = углу DBC = 30 / 2 = 15 — градусов каждый угол. Рассмотрим треугольник ABD, он прямоу..
→ А(х₁ ; у₁) ; В(х₂ ; у₂) ; АВ решаем : → А(9 ; 2) ; В(х₂ ; у₂) ; АВ x₂ — 9 = 2 x₂ = 11 y₂ — 2 = 6 y₂ = 8 Ответ : В(11 ; 8).
Видео:№795. Найдите диаметр окружности, если его концы удалены от некоторой касательной на 18 см и 12 см.Скачать
Практическая работа по математике на тему «Аксиомы стереометрии»
Видео:Степень точки, радикальная ось. Планиметрия из ВСОШ и Высшей пробы. Чтобы решать планиметрию нужно..Скачать
ПРАКТИЧЕСКАЯ РАБОТА.
Тема: Аксиомы стереометрии
ЦЕЛЬ РАБОТЫ: закрепить и систематизировать знания обучающихся об аксиомах стереометрии и их следствиях; определить уровень усвоения знаний по данной теме; оценить результат деятельности обучающихся.
ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ:
1. Изучить теоретический материал ( А.В. Погорелов, «Геометрия», параграф 15, «Аксиомы стереометрии и их простейшие следствия»);
2. Выполнить задания практической работы;
3. Оформить отчет о работе.
Варианты практической работы
1. В пространстве даны три точки: А, В и С такие, что АВ = 14 см, В С = 16 см и АС = 18 см. Найдите площадь треугольника АВС.
2. Треугольник МКР — равносторонний со стороной, равной 12 см. Точка А лежит вне плоскости треугольника МКР, причем АК = АР = см, а АМ = 10 см. Найдите косинус угла, образованного высотами МЕ и АЕ соответственно треугольников МКР и АКР.
3. В плоскости α лежат точки В и С, точка А лежит вне плоскости α . Найдите расстояние от точки А до отрезка ВС, если АВ = 5 см, АС = 7 см, ЕС = 6 см.
4. Даны пять точек пространства. Через каждые две из них проведена прямая. Сколько различных прямых существует при этих условиях? Рас смотрите различные случаи расположения точек, выберите правильную комбинацию.
а) 1,5, 6, 7, 10; в) 1, 4, 5, 6, 8, 10;
6)1,5,6,8,10; г) 1, 5, 6, 8, 9, 10.
5. Проведены четыре различные плоскости. Известно, что каждые две из них пересекаются. Найдите наибольшее число прямых попарного пересечения плоскостей.
6. Некоторая окружность касается двух пересекающихся прямых в пространстве. Диаметр этой окружности равен дм, а расстояние от центра окружности до точки пересечения прямых равно см. Найдите угол между этими прямыми,
а) 30°; б) 45°; в) 60°; г) 90°.
7. Четыре точки пространства А, В, С и D образуют прямоугольник АВСО. Найдите площадь круга, описанного около этого прямоугольника, если
8. Прямые а и Ь пересекаются в точке О, прямая с так же проходит через точку О. Через каждые две из данных трех прямых проведена плоскость. Сколько всего различных плоскостей может быть проведено?
б) 1 или 2; г) 3 или 4.
1. В пространстве даны три точки: М,К и Р такие, что МК= 13см, МР = 14см, КР= 15см. Найдите площадь треугольника МКР.
2. Треугольник АВС — равносторонний со стороной, равной 8 см. Точка D лежит вне плоскости треугольника АВС, причем D В = D С = 5см, а D А = см. Найдите косинус угла между высотами D К и АК соответственно треугольников В D С и АВС.
3. Точки С и К лежат в плоскости β , а точка D — вне плоскости β . Найдите расстояние от точки D до отрезка СК, если С D = СК = 10 см, а D К = см.
4. В пространстве отмечены шесть точек, и через каждые две из них проведены прямые. Рассмотрев все случаи расположения точек, найдите наибольшее число образовавшихся различных прямых.
а) 30; 6)15; в) 12; г) 18.
5. Проведены четыре различные плоскости. Каждые две из них пересекаются или не пересекаются. Сколько всего прямых попарного пересечения двух из этих плоскостей может оказаться?
а) 0, 1,2, 3, 4, 6; в) 0, 1,2,3,4,5,6;
6)0,3, 4, 5, 6; г) О, 1, 3, 4, 5, 6.
6. Некоторая окружность касается двух пересекающихся прямых в пространстве. Найдите радиус этой окружности, если угол между прямыми 60°, а расстояние от центра этой окружности до точки пересечения прямых равно ( ) см.
а) см; б) ( ) см; в) см; г) ( )см.
7. Четыре точки пространства М, К, Р и О образуют прямоугольник МКРО. Найдите площадь круга, описанного около этого прямоугольника, если ОР = дм и ОМ = дм.
8. Прямые m , n и l пересекаются в одной точке. Через каждые две из них проходит плоскость. Сколько всего различных плоскостей может быть проведено?
Видео:#59. Олимпиадная задача о касательной к окружности!Скачать
Задание 16 Профильного ЕГЭ по математике. Планиметрия. Задача 3
Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C
а) Докажите, что прямые AD и BC параллельны.
б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.
а) Другими словами, в пункте (а) надо доказать, что точка D лежит на прямой , а точка C — на прямой .
— прямоугольная трапеция, поскольку (как радиусы, проведенные в точку касания), .
Если , то (как односторонние углы),
Тогда — диаметр первой окружности; — диаметр второй окружности, так как вписанный угол, опирающийся на диаметр, — прямой.
AK — высота в , где
Рассмотрев прямоугольную трапецию , где , найдем, что .
Видео:Алгоритмы. Пересечение окружностейСкачать
Окружность и круг — определение и вычисление с примерами решения
Содержание:
Пусть в природе не существовало бы ни одного круга или треугольника, и все-таки истины, доказанные Евклидом, навсегда сохранили бы свою достоверность и очевидность.
Раньше вы знакомились с основными геометрическими фигурами, устанавливали особенности этих фигур и их взаимное расположение. Но на практике довольно часто приходится решать «обратную» задачу — по определенным особенностям находить фигуру, имеющую их. Именно таково содержание задач на построение, которые будут рассматриваться в этом разделе.
Еще в работах древнегреческих математиков описаны задачи на построение и методы их решения.
Многие из этих задач составляют классику евклидовой геометрии. Кроме практической ценности, такие задачи представляют значительный исследовательский интерес, поскольку в ходе их решения определяются новые особенности построенных фигур.
Окружность и круг:
Определение. Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, равноудаленных от данной точки, которая называется центром окружности.
Радиусом окружности называется отрезок, соединяющий центр окружности с любой точкой на окружности (или длина этого отрезка).
Хордой окружности называется отрезок, соединяющий две точки окружности.
Диаметром окружности называется хорда, проходящая через центр окружности.
Дугой окружности называется часть окружности, ограниченная двумя точками.
На рисунке 48 точка О — центр, отрезок ОС — радиус окружности. Радиус обозначают буквой R (или
На рисунке 49 изображены: хорда ЕН, дуга КМ (обозначается: ), диаметр АВ. Диаметр состоит из двух радиусов. Поэтому диаметры окружности равны между собой. Диаметр АВ состоит из радиусов OA и ОВ, откуда Диаметр обозначают буквой D (или d). Тогда
Любые две точки окружности разбивают ее на две дуги, которые дополняют друг друга до окружности. Эти дуги так и называются — дополнительными. Чтобы различать такие дуги, их иногда обозначают тремя буквами. На рисунке 49 дуги АКМ и АНМ — дополнительные.
Определение. Кругом называется часть плоскости, ограниченная окружностью.
Точки окружности также принадлежат кругу (рис. 50). Поэтому центр, радиус, хорда и диаметр у круга те же, что и у его окружности.
Часть круга, заключенная между двумя радиусами, называется сектором. Часть круга, заключенная между дугой окружности и хордой, соединяющей концы дуги, называется сегментом (рис. 51). Два радиуса разбивают круг на два сектора, хорда разбивает круг на два сегмента.
Полуокружностью называется дуга окружности, концы которой являются концами диаметра. Полукругом называется часть круга, ограниченная полуокружностью и диаметром, соединяющим концы полуокружности. На рисунке 49 дуга АКВ — полуокружность, сегмент АКВ — полукруг.
Угол, вершина которого находится в центре окружности, называется центральным углом. На рисунке 51 — центральный угол.
Окружности (круги) равны, если равны их радиусы.
Две окружности могут не иметь общих точек, могут пересекаться в двух точках или касаться друг друга в одной точке. Окружности разного радиуса с общим центром называются концентрическими. Часть плоскости между двумя концентрическими окружностями называется кольцом (рис. 52).
Видео:ЕГЭ на 92+. Задание 16. Планиметрия. Разбор домашнего заданияСкачать
Определение окружности и круга
Окружность — это замкнутая линия на плоскости, все точки которой находятся на одинаковом расстоянии от одной точки — центра окружности.
Круг — это внутренняя часть плоскости, ограниченная окружностью.
Размеры окружности и круга определяются их радиусом — отрезком, который соединяет центр с точкой на окружности (рис. 3).
В математике «окружность» и «круг» — два различных, хотя и связанных между собой, понятия. Окружность, например, является моделью обруча, а круг — моделью крышки люка.
Определение окружности и ее элементов
Пусть на плоскости отмечена точка О. Очевидно, что от точки О можно отложить бесконечное множество отрезков длиной R (рис. 162). Концы всех таких отрезков на плоскости образуют окружность — фигуру, уже известную из курса математики. Определение Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, удаленных от данной точки (центра окружности) на одинаковое расстояние. Иначе говорят, что все точки окружности равноудалены от ее центра. Определение Кругом называется часть плоскости, ограниченная окружностью и содержащая ее центр. Иначе говоря, круг состоит из всех точек плоскости, удаленных от данной точки (центра круга) на расстояние, не превышающее заданного. На рисунке 163 заштрихованная часть плоскости — круг, ограниченный окружностью с тем же центром. Центр окружности и круга является точкой круга, но не является точкой окружности.
Определение Радиусом окружности (круга) называется расстояние от центра окружности до любой ее точки. Радиусом также называется любой отрезок, соединяющий точку окружности с ее центром. На рисунке 162 — радиусы окружности с центром О. Как правило, радиус обозначается буквой R (или r ).
Радиус — от латинского «радиус» — луч, спица
Хорда — от греческого «хорда» — струна, тетива
Диаметр — от греческого «диа» — насквозь и «метрео» — измеряющий насквозь; другое значение этого слова — поперечник
Радиусом также называется любой отрезок, соединяющий точку окружности с ее центром. На рисунке 162 — радиусы окружности с центром О. Как правило, радиус обозначается буквой R (или r ).
Определение:
Хордой называется отрезок, соединяющий две точки окружности.
Диаметром называется хорда, проходящая через центр окружности.
На рисунке 164 изображены две хорды окружности, одна из которых является ее диаметром. Обычно диаметр обозначают буквой d. Очевидно, что диаметр вдвое больше радиуса, то есть d = 2R.
Построение окружности выполняют с помощью циркуля.
Что такое окружность и круг
Окружность — это фигура, состоящая из всех точек плоскости, равноудален ных от данной точки. Эту точку называют центром окружности.
Отрезок, соединяющий любую точку окружности с ее центром, называют ради усом. Отрезок, соединяющий две против вольные точки окружности, — хорда окружности. Хорда, проходящая через центр окружности, — диаметр (рис. 200). Каждый диаметр окружности состоит’ из двух радиусов, поэтому его длина вдвое больше длины радиуса. Длина хорды, не проходящей через центр окружности, меньше длины диаметра, (Почему?)
Окружность на бумаге описывают МА и MB — перпендикуляры на ОА и ОВ (см. рис. 216), то (по гипотенузе и острому углу). Поэтом МА = MB, следовательно, точка М равноудалена от сторон данного угла.
Геометрическим местом точек угла, равноудаленных от его сторон, является биссектриса этого угла.
Здесь имеются в виду углы меньше развернутого.
Верно ли, что геометрическим местом точек, равноудален-ных от сторон угла, является биссектриса этого угла? Нет. Когда в планиметрии говорят о геометрическом месте точек, не уточняя, о каких именно точках идет речь, то имеют в виду точки плоскости, которой принадлежит данная фигура. При таком условии геометрическим местом точек, равноудаленных от ф сторон угла, является объединение биссектрисы I данного угле g и всех точек некоего другого угла, показанного на рисунке 217,
Ведь каждая точка угла КОР также равноудалена от сторон донного угла АО В (речь идет об углах меньше развернутого).
Когда мы говорим, что геометрическим местом точек, равноудаленных от концов отрезка, является серединный перпендикуляр этого отрезка, то мы имеем в виду, что речь идет о геометрическом месте точек плоскости, на которой лежит отрезок.
А геометрическим местом точек пространства, равноудаленных от концов отрезка, является некая плоскость (мал. 218).
Подумайте, как расположена эта плоскость относительно денного отрезка.
Геометрические места точек пространства изучают в старших классах.
Пример №3
Докажите, что серединные перпендикуляры двух сторон треугольника пересекаются.
Решение:
Пусть n и m— серединные перпендикуляры сторон ВС и АВ треугольника (рис. 219). Докажем, что они не могут быть параллельны. Доказывать будем от противного. Допустим, что n || m. Тогда прямая, перпендикулярная к п, должна быть перпендикулярной и к m, то есть . Но по условию А две прямые, перпендикулярные к третьей прямой, параллельны. Таким образом, из допущения, что п || т, следует параллельность сторон АВ и ВС треугольника. А этого не может быть. Поэтому прямые ли т не могут быть параллельными. Они пересекаются.
Окружность и треугольник
Окружность и треугольник могут не иметь общих точек или иметь 1, 2, 3, 4, 5, 6 общих точек (соответствующие рисунки выполните самостоятельно). Заслуживаем внимания случаи, когда окружность проходит через все три вершины треугольника или когда она касается всех и сторон треугольника. Рассмотрим такие случаи подробнее.
Описанная окружность
Окружность называется описанной около треугольника, если она проходит через все вершины треугольника (рис. 223).
Теорема: Около каждого треугольника можно описать только одну окружность. Ее центром является точка пересечения серединных перпендикуляров двух сторон треугольника.
Пусть ABC — произвольный треугольник (рис. 224). Найдем точку, равноудаленную от вершин А, В и С.’ Метрическое место точек, равноудаленных от А и В, — серединный перпендикуляр m отрезка АВ; геометрическое место точек, равноудаленна от В и С, — серединный перпендикуляр n отрезка ВС. Эти два серединных перпендикуляра не могут быть параллельными, они пересекаются в точке О. А она равноудалена от Н и С. Следовательно, ОА = ОВ = ОС, поэтому О — центр окружности, описанной около ABC.
Для каждого отрезка АВ существует серединный перпендикуляр, и только один, а для ВС — серединный перпендикуляр и только один. И точка их пересечения существует всегда, только одна. Таким образом, около каждого треугольника можно описать одну окружность, и только одну.
- Серединные перпендикуляры всех трех сторон произвольного треугольника проходят через одну и ту же точку.
- Через любые три точки, не лежащие на одной прямой, можно провести окружность, и только одну.
Из доказанной теоремы следует cnocof построения окружности, описанной около треугольника. Чтобы описать около треугольника ABC окружность, достаточно:
- построить серединные перпендикуляры двух сторон данного треугольника;
- определить точку О, в которой эти серединные перпендикуляры пересекаются;
- ) из центра О провести окружность радиуса ОА.
Центр окружности, описанной около треугольника, может лежать во внутренней или внешней области данного треугольника либо на его сторон (рис. 225).
Вписанная окружность
Окружность называется вписанной в треугольник если она касается всех сторон треугольника (рис. 226). Центр окружности, вписанной в треугольник, лежим’ и внутренней области этого треугольник.
Теорема: В каждый треугольник можно вписан только одну окружность. Ее центром является точка пересечения двух биссектрис треугольника.
Доказательство:
Пусть ABC — произвольный треугольник. Определим точи О, равноудаленную от всех его сторон (рис. 227). Геометрическое место точек, лежащих внутри угла А и равноудаленных второй АВ и АС, — биссектриса l угла А. Гtjметрическое место точек, равноудаленных от сторон АВ и ВС и лежащих внутри угла В, — биссектриса t угла B. Эти две биссектрисы обязательно Пересекаются (докажите это!). Точка U, в которой пересекаются биссектрисы l и t, равноудалена от всех трех сторон данного треугольника. Следовательно, точка О — центр окружности, Вписанной в треугольник АВС.
В каждом треугольнике все три биссектрисы пересекаются в одной точке.
Из доказанной теоремы следует способ построения окружности, вписанной в треугольник. Чтобы вписать в данный треугольник окружность, достаточно:
- провести две его биссектрисы;
- из точки их пересечения О опустить перпендикуляр OL на произвольную сторону треугольника;
- из центра О радиуса OL описать окружность. Она касается каждой стороны треугольника, следовательно, является вписанной в данный треугольник.
Теорема: Центром окружности, описанной около прямоугольного треугольника, является середина его гипотенузы.
Пусть ABC — произвольный треугольник с прямым углом С, t— серединный перпендикуляр катета АС, пересекающий гипотенузу АВ в точке О (рис. 228).
Поскольку точка О лежит на серединном перпендикуляре отрезка АС, то .
точка О—середина гипотенузы АВ, равноудаленная от всех вершин треугольника. Таким образом, окружность с центром О и радиусом ОА проходит через все вершины данного треугольника.
Диаметр окружности, описанной около прямоугольного треугольника, равен его гипотенузе.
Теорема: Из любой точки окружности ее Диаметр, не выходящий из этой точки, виден под прямым углом.
Доказательство:
Пусть АВ — произвольный диаметр окружности с центром О, а С— произвольная точка окружности, отличная от А и В (рис. 229). Покажем, чтоПоскольку
Геометрическим местом точек плоскости, из которых отрезок АВ виден под прямым углом, является окружность диаметра АВ. На самом деле этому ГМТ точки А и В не принадлежат. Подробнее об этом вы узнаете в старших классах.
Пример №4
Найдите радиус окружности, описанной около прямоугольного треугольника с гипотенузой 6 см.
Решение:
Диаметр окружности, описанной около прямоугольного треугольника, является его гипотенузой. Радиус вдвое меньше: 3 см.
Пример №5
Докажите, что диаметр окружности, вписанной в прямоугольный треугольник с катетами а и Ь и гипотенузой с, равен a + b — c.
Решение:
Пусть в угол С прямой, а К, Р, Т — точки касания вписанной в треугольник окружности (рис. 230). Поскольку АР =АТ и ВК = ВТ, то АС + ВС — АВ = PC + СК = 2r, или 2r = a + b- с.
Геометрические построения
Пользуясь линейкой’ и циркулем, моле но выполнить много геометрических построений, то есть начертить геометрические фигуры. Рассмотрим сначала, как выполняются самые простые геометрические построения.
Пример №6
Постройте треугольник по данным сторонам.
Решение:
Пусть даны три отрезки а, b и с (рис. 232). Нужно построить, треугольник, стороны которого были бы равны этим отрезкам. С помощью линейки проводим произвольную прямую, обозначаем на ней произвольную точку В и циркулем откладываем на этой прямой отрезок ВС = а. Раствором циркуля, равным с описываем дугу окружности с центром В. С той же стороны от прямой СВ описываем дугу окружности радиуса b с центром С. Точку пересечения А этих дуг соединяем отрезками с С и В. Треугольник ABC — именно тот, который требовалось построить, так как его стороны ВС, АС и АВ равны данным отрезкам.
Если построенные дуги не пересекаются, требуемый треугольник построить невозможно. Это бывшие в том случае, когда один из данных отрезков больше суммы двух других или равен их сумме.
Пример №7
Постройте угол, равный данному углу.
Решение:
Пусть дан угол АОВ и требуется построить угол КРТ, равный (рис. 233). Проводим луч РТ и дуг* равных радиусов с центрами О и Р. Пусть одна из этих д пересекает стороны угла АОВ в точках А и В, а другая луч РТ в точке Т. Дальше раствором циркуля, равным А/ описываем третью дугу с центром Т. Если она пересекает другую дугу в точке К, проводим луч РК. Угол КРТ — то 1 Будем считать, что линейка без делений.
который требовалось построить. Ведь треугольники КРТ и АОВ равны (по трем сторонам), поэтому
Пример №8
Постройте биссектрису данного угла.
Решение:
Пусть АОВ — данный угол (рис. 234). Произвольным раствором циркуля опишем дугу с центром О. Пусть А и В — точки пересечения этой дуги с лучами О А и ОВ. Из центров А и В опишем дуги такими же радиусами. Если D — точка пересечения этих дуг, то луч OD — биссектриса угла АОВ.
Действительно, (по трем сторонам). Поэтому
Пример №9
Разделите данный отрезок пополам.
Решение:
Пусть АВ — данный отрезок (рис. 235). Из точек А и В радиусом АВ описываем дуги. Они пересекутся в неких точках С и D.
Прямая CD точкой М разделит данный отрезок пополам.
Действительно, по трем сторонам , поэтому По первому признаку равенства треугольников . Итак, AM = ВМ.
Пример №10
Через данную точку Р проведите прямую, перпендикулярную и данной прямой а.
Решение:
В зависимости от того, лежит или не лежит точка Р на прямой а, задачу можно решить, как показа но на рисунках 236 и 237. Опишите и аргументируйте эти построения самостоятельно.
Пример №11
Через точку Р, не лежащую на прямой АВ, проведите прямую, параллельную прямой АВ.
Решение:
Через точку Р и про из вольную точку А прямой АВ проводим прямую АТ (рис. 238). Строим угол ТРМ, равный углу РАВ, так, что бы эти углы стали соответственны ми при прямых РК, АВ и секущей АР. Построенная таким образом пря мая РК удовлетворяет задачу: она проходит через данную точку Р и параллельна прямой АВ, поскольку
Геометрическими построениями часто приходилось заниматься многим людям. Еще в доисторические времена мастера, изготавливающие колеса к колесницам, умели делить окружность на несколько равных частей. В наше время выполнять такие построения приходится специалистам, проектирующим или изготавливающим шестеренки, дисковые пилы (рис. 239), турбины и различные роторные механизмы. Как бы вы разделили окружность, например, на 5, 6 или 7 равных частей?
Основные чертежные инструменты — линейка и циркуль — были известны еще несколько тысячелетий назад.
Слово линейка происходит от слова линия, которое на латинском языке сначала означало «льняная нитка», «черта, проведенная ниткой, бечевкой» (производное от лат. Плит — лен). Слово циркуль тоже латинского происхождения, первоначально слово циркулюс означало «окружность, круг», а потом стало означать инструмент, с помощью которого проводят окружности.
В Древней Греции линейку и циркуль признавали единственными приборами геометрических построений. Задачу на построение считали решенной, если все построения в ней выполнялись только с помощью линейки и циркуля. Сейчас специалисты при выполнении построений пользуются угольником, транспортиром, рейсмусом, рейсшиной и другими чертежными приспособлениями.
Пример №12
Разделите данную дугу окружности на две равные части.
Решение:
Пусть дана дуга АВ окружности с центром О (рис. 240). Представим угол АОВ и проведем его биссектрису ОК. Треугольники АОК и КОВ равны, поэтому и дуги АК и КВ равны.
Пример №13
Постройте угол вдвое больше данною.
Решение:
Пусть АОВ — данный угол (рис. 241) Опишем дугу окружности с центром О Если она пересечет стороны данного угла в точках А и В, из В как из центра сделаем засечку ВС = ВА и проведем луч ОС. Угол АОС вдвое больше
Задачи на построение
С геометрическими построениями имеют дело различные специалисты. Геометрические построении выполняют чертежники, архитекторы, конструкторы, топографы, геодезисты, штурманы. Разные геометрические фигуры строят также: слесарь — на жести, столяр — на доске, портной— на ткани, садовник — на земле.
В задаче на построение требуется построить геометрическую фигуру, которая должна удовлетворять определенные условия. В геометрии построения выполняют чаще всего с помощь к линейки и циркуля. Условимся: если в задаче не сказано, какими инструментами следует выполнить построение, то имеются в виду только линейка (без делений) и циркуль.
Более сложные задачи на построение часто решают методом геометрических мест. Пусть, например, в задаче требуете!’ найти точку X, удовлетворяющую два условия. Если первое условие удовлетворяют точки фигуры К, а второе — точки фигуры Р, то X должна принадлежать каждой из этих фигур. Тс есть X — точка пересечения фигур К и Р.
Пример №14
Постройте прямоугольный треугольник по да» ному катету а и гипотенузе с (рис. 243).
Решение:
Строим прямой угол АСВ, на его стороне откладываем отрезок СВ = а. Точки С и В — две вершины треугольника, который требуется построить. Третья верши» должна лежать, во-первых, на луче СА, во-вторых, на pfti стоянии с от В, то есть на окружности радиуса с с центр В. Если эту окружность пересекает луч СА в точке А, 1 треугольник ABC — именно тот, который требовалось не строить. Ведь его угол С прямой, ВС = а, ВА = с.
Второй способ (рис. 244). Откладываем отрезок АВ = с и проводим окружность диаметра АВ — ГМТ, из которых АВ виден под прямым углом. Дальше строим полуокружность радиуса а с центром В — ГМТ, удаленных от В на расстояние а и лежащих по одну сторону от прямой АВ. Если два ГМТ пересекаются в точке С, то треугольник ABC — именно тот, который требовалось построить.
Составные части решения задачи на построение — анализ, построение, доказательство и исследование. В анализе ищут способ решения задачи, в построении выполняется само построение, в доказательстве обосновывается правильность выполненного построения, в исследовании выясняется, сколько решений имеет задача.
Пример №15
Постройте треугольник по данной стороне, прилежащему к ней углу и сумме двух других сторон (рис. 245).
Решение:
Анализ. Допустим, что требуемый треугольник ABC построен. Его сторона с и угол А = а — даны. Дан также отрезок, равный сумме сторон а и b. По данным отрезкам с и а + b и углу А между ними можно построить A ABD. Вершиной С искомого треугольника будет такая точка отрезка AD, для которой CD = СВ. Следовательно, точка С должна лежать и на серединном перпендикуляре отрезка BD.
Построение. По двум данным отрезкам и углу между ними строим , после чего проводим серединный перпендикуляр I отрезка BD. Пусть прямая I пересекает отрезок АВ в точке С. Проводим отрезок СВ. Треугольник ABC — такой, который требовалось построить.
Доказательство:
В треугольнике по построению. АС + СВ — АС + CD — а + b. Следовательно, удовлетворяет все условия задачи.
Исследование. Задача имеет решение только при условии, что а + b > с.
Если задача несложная и способ ее решения известен, анализ можно не описывать. А в решении не обязательно выделять анализ, построение, доказательство и исследование.
В математике чаще всего имеют дело с задачами: на вычисление, на доказательство, на построение, на преобразование и на исследование. Геометрическими задачами на построение активно интересовались античные геометры. Допуская лишь классические построения (выполняемые только линейкой и циркулем), они исследовали, какие из построений можно вы-полнить, а какие невозможно. В частности, выясняли:
- можно ли любой угол разделить на три равные части;
- можно ли построить квадрат, площадь которого была бы равна площади данного круга;
- можно ли построить ребро такого куба, объем которого был бы в 2 раза больше объема данного куба.
Много столетий выдающиеся геометры пытались решить эти задачи и не смогли. Эти три классические задачи древности получили специальные названия:
- трисекция угла,
- 2квадратура круга,
- удвоение куба.
Последнюю задачу называют еще делосской задачей, связывая ее с древнегреческой легендой. согласно которой оракул бога Аполлона согласился спасти жителей острова Делос от чумы, если кубический жертовник в делосском храме заменят на жертовник такой же формы, но вдвое большего объема. Только почти через 2000 лет ученые убедились, что ни одну из этих трех задач с помощью лишь линейки и циркуля решить невозможно.
В настоящее время специалисты, которым приходится выполнять геометрические построения, пользуются не только линейкой и циркулем. С точки зрения классических методов такие построения приближенные. Но для практических нужд точности, которую обеспечивают приближенные методы, вполне достаточно
Пример №16
Найдите центр данной окружности.
Решение:
Обозначим на данной окружности три производные точки А, В и С (рис. 246).
Представим хорды АВ, ВС и проведем их серединные перпендикуляры n и m. Точка О, в которой пересекаются прямые n и m., — центр данной окружности. Ведь ОА = ОВ = ОС.
Пример №17
Через данную точку проведите касательную к данной окружности.
Решение:
Если данная точка А лежит на окружности центра О (рис. 247, а), проводим луч ОА, потом — прямую АК, перпендикулярную к ОА. Прямая АК — касательная, которую и требовалось построить.
Если точка А лежит вне данной окружности центра О (рис. 247, б), то на диаметре ОА описываем окружность. Она пересечется с данной окружностью в двух точках К и Р. Прямые АК и АР — искомые касательные, поскольку (Из точек К и Р вспомогательной окружности ее диаметр ОМ виден под прямыми углами АКО и АРО.) В этом случае задача имеет два решения.
Свойство диаметра, перпендикулярного хорде
Диаметр, перпендикулярный хорде, проходит через ее середину. Докажите.
Решение
Пусть СО — диаметр окружности с центром О, АВ — хорда этой окружности, Докажем, что М — точка пересечения отрезков АВ и СD— середина отрезка АВ.
В случае, когда хорда АВ сама является диаметром, точка М совпадает с центром О и утверждение задачи очевидно. Пусть хорда АВ не является диаметром (рис. 165). Проведем радиусы OA и ОВ. Тогда в равнобедренном треугольнике АОВ высота ОМ является медианой. Итак, AM = ВМ, что и требовалось доказать.
Докажите самостоятельно еще одно утверждение (опорное): диаметр окружности, проведенной через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.
Касательная к окружности
Определение и свойство касательной
Любая прямая, проходящая через точки окружности, называется секущей; ее отрезок, лежащий внутри окружности, является хордой. На рисунке 167 хорда CD — отрезок секущей b . Рассмотрим теперь прямую, имеющую с окружностью только одну общую точку.
Определение:
Касательной к окружности называется прямая, имеющая с окружностью единственную общую точку. Общая точка касательной и окружности называется точкой касания.
На рисунке 167 прямая а является касательной к окружности с центром О. Иначе говоря, прямая а касается окружности с центром О в точке А .
Определим взаимное расположение касательной и радиуса окружности, проведенного в точку касания.
Теорема (свойство касательной)
Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.
Доказательство:
Пусть прямая а касается окружности с центром О в точке А (рис. 168). Докажем, что Применим метод доказательства от противного.
Пусть отрезок OA не является перпендикуляром к прямой а. Тогда, по теореме о существовании и единственности перпендикуляра к прямой, из точки О можно провести перпендикуляр ОB к прямой а . На луче АВ от точки В отложим отрезок ВС, равный АВ , и соединим точки О и С . Поскольку по построению отрезок ОВ — медиана и высота треугольника АОС, то этот треугольник равнобедренный с основанием АС, то есть OA = ОС . Таким образом, расстояние между точками О и С равно радиусу окружности, и, по определению радиуса, точка С должна лежать на данной окружности. Но это противоречит определению касательной, поскольку А — единственная общая точка окружности с прямой а. Из этого противоречия следует, что наше предположение неверно, то есть OA . Теорема доказана.
Признак касательной
Докажем теорему, обратную предыдущей.
Теорема: (признак касательной)
Если прямая проходит через точку окружности перпендикулярно радиусу, проведенному в эту точку, то она является касательной к окружности.
Доказательство:
Пусть прямая а проходит через точку А, лежащую на окружности с центром О, причем . Докажем, что а — касательная к окружности. Согласно определению касательной, нам необходимо доказать, что окружность имеет с прямой а единственную общую точку. Применим метод доказательства от противного.
Пусть прямая а имеет с окружностью общую точку В , отличную от А (рис. 169). Тогда из определения окружности ОА = ОВ как радиусы, то есть треугольник АОВ равнобедренный с основанием АВ. По свойству углов равнобедренного треугольника , что противоречит теореме о сумме углов треугольника.
Следовательно, точка А — единственная общая точка окружности и прямой а, значит, прямая а — касательная к окружности.
Свойство отрезков касательных
Пусть даны окружность с центром О и точка А, не принадлежащая кругу, ограниченному данной окружностью (рис. 170).
Через точку А можно провести две касательные к данной окружности. Отрезки, соединяющие данную точку А с точками касания, называют отрезками касательных, проведенных из точки А к данной окружности. На рисунке 170 АВ и АС — отрезки касательных, проведенных к окружности из точки А .
Опорная задача
Отрезки касательных, проведенных из данной точки к окружности, равны. Докажите.
Решение
Пусть АВ и АС — отрезки касательных, проведенных к окружности с центром О из точки А (рис. 170). Рассмотрим треугольники АОВ и АОС. По свойству касательной то есть эти треугольники являются прямоугольными с общей гипотенузой АО и равными катетами ОВ = ОС как радиусы окружности). Следовательно, по гипотенузе и катету, откуда АВ = АС.
Касание двух окружностей
Определение:
Две окружности, имеющие общую точку, касаются в этой точке, если они имеют в ней общую касательную.
Общая точка двух окружностей в таком случае называется точкой касания окружностей.
Различают два вида касания окружностей: внутреннее и внешнее.
Касание окружностей называется внутренним, если центры окружностей лежат по одну сторону от общей касательной, проведенной через точку касания (рис. 171, а);
Касание окружностей называется внешним, если центры окружностей лежат по разные стороны от общей касательной, проведенной через точку касания (рис. 171, б).
Рис. 171 Касание двух окружностей. 1. внутреннее; 2. внешнее.
По свойству касательной радиусы данных окружностей, проведенные в точку касания, перпендикулярны общей касательной. Из теоремы о существовании и единственности прямой, перпендикулярной данной, следует, что центры касающихся окружностей и точка касания окружнос тей лежат на одной прямой.
Касающиеся окружности имеют единствен ную общую точку — точку касания.
Если данные окружности имеют радиусы R и r (R > r), то расстояние между центрами окружностей равно R-r в случае внутреннего касания и R+r в случае внешнего касания.
Задачи на построение
Что такое задачи на построение?
Задачи на построение представляют собой отдельный класс геометрических задач, решение которых подчиняется определенным правилам. Цель решения этих задач — построение геометрических фигур с заданными свойствами с помощью чертежных инструментов. Если в условии задачи нет специальных примечаний, то имеются в виду построения с помощью циркуля и линейки. С помощью линейки можно провести:
- произвольную прямую;
- прямую, проходящую через данную точку;
- прямую, проходящую через две данные точки.
Заметим, что никаких других построений линейкой выполнять нельзя. В частности, с помощью линейки нельзя откладывать отрезки заданной длины.
Циркуль — от латинского «циркулус» — окружность, круг.
С помощью циркуля можно:
- провести окружность (часть окружности) произвольного или заданного радиуса с произвольным или заданным центром;
- отложить от начала данного луча отрезок заданной длины.
Кроме того, можно отмечать на плоскости точки и находить точки пересечения прямых и окружностей.
Все перечисленные операции называют элементарными построениями, а решить задачу на построение — это значит найти последовательность элементарных построений, после выполнения которых искомая фигура считается построенной, и доказать, что именно эта фигура удовлетворяет условию задачи.
Итак, решение задач на построение заключается не столько в самом построении фигуры, сколько в нахождении способа построения и доказательстве того, что полученная фигура искомая.
Основные задачи на построение
Если каждый шаг построений описывать полностью, решение некоторых задач может оказаться довольно громоздким. С целью упрощения работы выделяют несколько важнейших задач, которые считаются основными и не детализируются каждый раз при решении более сложных задач.
Построение треугольника с данными сторонами | |||||||||||||||||||||||||||||||||||
Построение биссектрисы угла | |
Пусть дан неразвернутый угол с вершиной А . Построим его биссектрису. | |
С помощью циркуля построим окружность произвольного радиуса с центром А . Пусть В к С — точки пересечения этой окружности со сторонами данного угла. | |
Построим окружности того же радиуса с центрами В и С . Пусть D — точка пересечения этих окружностей. | |
Проведем луч AD. По построению (по третьему признаку). Отсюда , то есть AD — биссектриса данного угла А . |
Построение перпендикулярной прямой | |
Пусть даны прямая а и точка О . Построим прямую, проходящую через точку О и перпендикулярную прямой а . Рассмотрим два случая | |
Точка O лежит на прямой а | |
Построим окружности радиуса АВ с центрами А и В. Пусть С — одна из точек их пересечения. Проведем прямую через точки С и О. | |
По построению отрезок СО — медиана равностороннего треугольника ABC , которая является также его высотой. Итак, , то есть прямая СО — искомая. | |
Точка O не лежит на прямой а | |
Построим окружность с центром О , которая пересекает прямую O, в точках А и В . | |
Построими окружности того же радиуса с центрами A и В . Пусть Ol — точка пересечения этих окружностей, причем точки О и Ol лежат по разные стороны от прямой а . | |
Проведем прямую . Пусть С — точка пересечения прямых и а . По построению (по третьему признаку). Отсюда . Тогда ОС — биссектриса равнобедренного треугольника АОВ , проведенная к основанию. Она также является медианой и высотой треугольника. Следовательно, а , то есть прямая — искомая. |
Отметим, что построенная прямая перпендикулярна отрезку АВ и проходит через его середину. Такую прямую называют серединным перпендикуляром к отрезку.
Пользуясь описанными построениями, несложно решить задачи на построение середины данного отрезка и на построение прямой, параллельной данной.
Для построения середины отрезка АВ достаточно провести две окружности радиуса АВ с центрами в точках А к В (рис. 172). Обозначив точки пересечения этих окружностей через и можно определить середину отрезка AB как точку пересечения прямых АВ и , после чего провести доказательство, аналогичное доказательству предыдущей задачи.
Для построения прямой, проходящей через данную точку О параллельно данной прямой а, достаточно провести через точку О прямую b , перпендикулярную а, и прямую с, перпендикулярную b (рис. 173). Тогда а || с по теореме о двух прямых, перпендикулярных третьей.
Таким образом, основными задачами на построение будем считать следующие:
- построение треугольника с данными сторонами;
- построение угла, равного данному неразвернутому углу;
- построение биссектрисы данного неразвернутого угла;
- построение прямой, проходящей через данную точку перпендикулярно данной прямой;
- построение серединного перпендикуляра к данному отрезку;
- построение середины данного отрезка;
- построение прямой, проходящей через данную точку параллельно данной прямой.
Если эти задачи применяются как вспомогательные при решение более сложных задач, соответствующие построения можно подробно не описывать.
Решение задач на построение
Решение задач на построение состоит из четырех основных этапов: анализ, построение, доказательство, исследование.
Общая схема решения задач на построение |
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Описанные и вписанные окружности
- Плоские и пространственные фигуры
- Взаимное расположение точек и прямых
- Сравнение и измерение отрезков и углов
- Решение треугольников
- Треугольники и окружность
- Площадь треугольника
- Соотношения между сторонами и углами произвольного треугольника
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Окружность, проходящая через точку и касающаяся двух прямых
Предварительно рассмотрим две проекции циклиды Дюпена, представленные на рис. 2.14. Обратим внимание на профильную проекцию (рис. 2.14, б). Видно, что касательные кциклиде плоскости и Е^3 представляют собой сферы бесконечно большого радиуса, т.е. в данном случае они являются профильно проецирующими плоскостями и имеют основные проекции в виде прямых Ед3 и Ед3.
Преобразуем известные свойства циклиды в удобные для представленного на рис. 2.14 изображения формулировки.
- 1. Каждая из множества сфер, огибаемых циклидой Дюпена, касается последней по окружности касания 1-го семейства (рис. 2.14, окружности лежат в плоскостях А’).
- 2. Множество плоскостей, которым принадлежат окружности касания 1 -го семейства, имеют одну общую для них линию пересечения — ось циклиды Дюпена (рис. 2.14, ось j).
- 3. Если из множества сфер, огибаемых циклидой Дюпена, выбрать произвольные две, то плоскость, перпендикулярная оси конуса вращения, касательного к этим сферам, и проходящая через середину расстояния между плоскостями окружностей касания, пройдет через осьу циклиды Дюпена.
- 4. Каждая из множества сфер, огибающих циклиду Дюпена, касается циклиды по окружности касания 2-го семейства (рис. 2.14, окружности лежат в плоскостях S’).
- 5. Множество плоскостей, которым принадлежат окружности касания 2-го семейства, имеют одну общую линию пересечения — ось i образуемого ими пучка плоскостей (рис. 2.14, плоскости S’).
- 6. Каждая из окружностей касания 1 -го семейства имеет с любой из окружностей касания 2-го семейства одну общую точку.
- 7. Две из окружностей касания 2-го семейства, расположенных в плоскости симметрии циклиды Дюпена, являются искомыми при решении задачи Аполлония (рис. 2.14, а).
- 8. Две из окружностей касания 1-го семейства, расположенные в плоскости симметрии циклиды Дюпена, являются искомыми при решении задачи Аполлония в ее частном случае, когда две или одна из данных окружностей имеют несобственные центры (рис. 2.14, б).
Задача Аполлония в случае, когда окружность должна касаться двух прямых и проходить через заданную точку, представлена на рис. 2.15. Заданы прямые l>m, Х^2 и точка 0.
Понятно, что Еп2, представляют собой в данном случае фронтально проецирующие плоскости.
Для решения предварительно построим вспомогательную сферу с центром в точке О, взятой произвольно на биссекторной плоскости Х°, и касательную к данным плоскостям X 1 и X 2 .
Проведем через ось i и точку О х плоскость X 3 , которая будет пересекать построенную сферу по окружности ЛВ. Из точки 0 х проводим прямые 0 х и 2 JJ ОВ и 0 х и || О А. Результатом будут искомые центры сфер О ю иО к .Из этих центров проводятся перпендикуляры О кх В х _|_ Г- (f x В 2 _|_ ? 2 ; CP# 11 1 и CFB 4 1 X 2 . Сферы с центрами в точках Сг х и С/ 2 и радиусами 0 К[ В [ и Cf 2 В ъ соответственно будут искомыми, а их очерки проходят через точку 0 х и касаются «прямых» Х’пз и Х^3, что и требовалось по заданию.
Следует добавить, что, поскольку сфера с нулевым радиусом (точка О 1 ) не могла принимать действенного участия в построении — для точки невозможно построить окружность, касающуюся циклиды, как для сферы с конкретно заданным радиусом, пришлось применить гомотетию с центром в точке i.
Гомотетию будем применять в случаях, когда заданы только прямые и точки в разных вариантах. Так, ниже рассматривается задача с данными прямой и двумя точками, где также придется применить гомотетию.
Ответы к страницам 106-107 №408-418 ГДЗ к учебнику «Математика» 6 класс Дорофеев, Шарыгин
Глава 5. Окружность
Ответы к параграфу 5.1 Окружность и прямая
Задание № 408
Что можно сказать о взаимном расположении прямой и окружности, если расстояние от центра окружности до прямой равно 4 см, а радиус окружности равен:
а) 3 см;
б) 4 см;
в) 6 см?
Подсказка. Сделайте схематический рисунок.
а) Прямая и окружность не имеют общих точек.
б) Прямая и окружность касаются друг друга.
в) Прямая и окружность пересекаются.
Задание № 409
Начертите произвольную окружность и отметьте на ней точку A. Постройте касательную к окружности в точке A.
Задание № 410
К окружности, радиус которой равен 6 см, проведены две параллельные касательные (рис. 5.3). Чему равно расстояние между ними?
6 + 6 = 12 (см) − расстояние между касательными.
Ответ: 12 см.
Задание № 411
Начертите две параллельные прямые. Постройте какую−нибудь окружность, для которой эти прямые являются касательными. Сколько таких окружностей можно построить? Где лежат их центры?
Окружностей можно построить множество. Центры этих окружностей лежат на прямой, параллельной данным и равноудаленной от них.
Задание № 412
Прямая k и окружность пересекается в точках A и B. Прямая k перемещается к центру окружности параллельно самой себе. В какой момент длина отрезка AB будет наибольшей? Сделайте соответствующий рисунок.
Длина отрезка AB будет наибольшей, когда прямая k проходит через центр окружности. В этом случае отрезок AB будет являться диаметром окружности.
Задание № 413
Проведите прямую и постройте какую−нибудь окружность радиусом 3 см, для которой эта прямая являются касательной. Сколько таких окружностей можно построить? Где расположены их центры?
Можно построить бесконечное множество таких окружностей. Их центры будут лежать по обе стороны от данной прямой на прямых, параллельных данной, на расстоянии, равному радиусу окружности 3 см.
Задание № 414
Проведите прямую и отметьте на ней произвольную точку M. Постройте несколько окружностей разных радиусов, касающихся данной прямой в точке M. Где лежат центры всех таких окружностей?
Центры окружностей лежат на прямой, перпендикулярной данной прямой.
Задание № 415
Начертите в тетради квадрат со стороной 8 см. Постройте окружность, касающуюся всех сторон квадрата.
Задание № 416
Представьте данное число в виде произведения двух десятичных дробей (укажите два решения):
а) 0,12;
б) 0,064;
в) 0,0002;
г) 0,3.
б) 0,064 = 0,4 * 0,16 = 0,8 * 0,08
в) 0,0002 = 0,1 * 0,002 = 0,001 * 0,2
Задание № 417
Найдите значение каждого из выражений:
1) 25 − 3,6 * 1,5 + 2,5;
2) (25 − 3,6) * (1,5 + 2,5);
3) 25 − 3,6 * (1,5 + 2,5).
Задание № 418
1) В полиэтиленовый пакет, выдерживающий 5 кг, положили 1,8 кг огурцов, а яблок в 1,5 раза больше. Не порвется ли пакет?
2) Представьте, что вы хотите помочь бабушке подготовить материал для изготовления шерстяного ковра из ниток разного цвета. Чтобы получить нужный узор, 1/10 всех ниток должна быть красного цвета, 2/5 − синего, 3/20 − коричневого, остальные − белого. У бабушки имеется 700 г ниток белого цвета. Рассчитайте, сколько граммов ниток каждого цвета надо взять для выполнения работы.